Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/67296
Título
Consistency factor for the MCD estimator at the Student-t distribution
Año del Documento
2023
Descripción
Producción Científica
Documento Fuente
Statistics and Computing (2023) 33:132, 1-17
Abstract
It is well known that trimmed estimators of multivariate scatter, such as the Minimum Covariance Determinant (MCD) estimator, are inconsistent unless an appropriate factor is applied to them in order to take the effect of trimming into account. This factor is widely recommended and applied when
uncontaminated data are assumed to come from a multivariate normal model. We address the problem of computing a consistency factor for the MCD estimator in a heavy-tail scenario, when uncontaminated data come from a multivariate Student-t distribution.We derive a remarkably simple computational formula for the appropriate factor and show that it reduces to an even simpler analytic expression in the bivariate case. Exploiting our formula, we then develop a robust Monte Carlo procedure for estimating the usually unknown number of degrees of freedom of the assumed and possibly contaminated multivariate Student-t model, which is a necessary ingredient for obtaining the required consistency factor. Finally, we provide substantial simulation evidence about the proposed procedure and apply it to data from image processing and financial markets.
Palabras Clave
Consistency factor
MCD
Robust distance
Multivariate
Student-t distribution
ISSN
0960-3174
Revisión por pares
SI
Patrocinador
PID2021-128314NB-I00 funded by MCIN/AEI/10.13039/501100011033/FEDER.
Version del Editor
Idioma
eng
Tipo de versión
info:eu-repo/semantics/draft
Derechos
openAccess
Aparece en las colecciones
Files in questo item
La licencia del ítem se describe como Attribution-NoDerivs 3.0 Unported