• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UVaDOCCommunitiesBy Issue DateAuthorsSubjectsTitles

    My Account

    Login

    Statistics

    View Usage Statistics

    Share

    View Item 
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Informática (Arquitectura y Tecnología de Computadores, Ciencias de la Computación e Inteligencia ...)
    • DEP41 - Artículos de revista
    • View Item
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Informática (Arquitectura y Tecnología de Computadores, Ciencias de la Computación e Inteligencia ...)
    • DEP41 - Artículos de revista
    • View Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/67688

    Título
    Automatic pronunciation assessment vs. automatic speech recognition: a study of conflicting conditions for L2-English
    Autor
    Cámara Arenas, EnriqueAutoridad UVA Orcid
    Tejedor García, CristianAutoridad UVA Orcid
    Tomas Vázquez, Celia Judith
    Escudero Mancebo, DavidAutoridad UVA Orcid
    Año del Documento
    2024
    Editorial
    University of Hawaii National Foreign Language Resource Center
    Descripción
    Producción Científica
    Documento Fuente
    Language Learning & Technology, Marzo, 2023, vol. 27, n. 1 p. 1-19
    Abstract
    This study addresses the issue of automatic pronunciation assessment (APA) and its contribution to the teaching of second language (L2) pronunciation. Several attempts have been made at designing such systems, and some have proven operationally successful. However, the automatic assessment of the pronunciation of short words in segmental approaches has still remained a significant challenge. Free and off-the-shelf automatic speech recognition (ASR) systems have been used in integration with other tools with the hopes of facilitating improvement in the domain of computer-assisted pronunciation training (CAPT). The use of ASR in APA stands on the premise that a word that is recognized is intelligible and well-pronounced. Our goal was to explore and test the functionality of Google ASR as the core component within a possible automatic British English pronunciation assessment system. After testing the system against standard and non-standard (foreign) pronunciations provided by participating pronunciation experts as well as non-expert native and non-native speakers of English, we found that Google ASR does not and cannot simultaneously meet two necessary conditions (here defined as intrinsic and derived) for performing as an APA system. Our study concludes with a synthetic view on the requirements of a reliable APA system.
    Materias (normalizadas)
    Reconocimiento automático del habla
    Recuperación de la información
    Materias Unesco
    5701.04 Lingüística Informatizada
    1203.17 Informática
    Palabras Clave
    Automatic Pronunciation Assessment (APA)
    Automatic Speech Recognition (ASR)
    Automatic Assessment Tools
    Second Language (L2) Pronunciation
    ISSN
    1094-3501
    Revisión por pares
    SI
    Version del Editor
    https://www.lltjournal.org/item/10125-73512/
    Idioma
    spa
    URI
    https://uvadoc.uva.es/handle/10324/67688
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Collections
    • DEP41 - Artículos de revista [109]
    Show full item record
    Files in this item
    Nombre:
    27_01_10125-73512.pdf
    Tamaño:
    530.7Kb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalExcept where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10