Mostrar el registro sencillo del ítem

dc.contributor.authorEspinosa, Ana
dc.contributor.authorReguera, Javier
dc.contributor.authorCurcio, Alberto
dc.contributor.authorMuñoz‐Noval, Álvaro
dc.contributor.authorKuttner, Christian
dc.contributor.authorVan de Walle, Aurore
dc.contributor.authorLiz‐Marzán, Luis M.
dc.contributor.authorWilhelm, Claire
dc.date.accessioned2024-06-12T15:56:14Z
dc.date.available2024-06-12T15:56:14Z
dc.date.issued2020
dc.identifier.citationSmall, 2020, 16 (11), 1904960es
dc.identifier.issn1613-6810es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/68098
dc.descriptionProducción Científicaes
dc.description.abstractProgress of thermal tumor therapies and their translation into clinical practice are limited by insufficient nanoparticle concentration to release therapeutic heating at the tumor site after systemic administration. Herein, the use of Janus magneto-plasmonic nanoparticles, made of gold nanostars and iron oxide nanospheres, as efficient therapeutic nanoheaters whose on-site delivery can be improved by magnetic targeting, is proposed. Single and combined magneto- and photo-thermal heating properties of Janus nanoparticles render them as compelling heating elements, depending on the nanoparticle dose, magnetic lobe size, and milieu conditions. In cancer cells, a much more effective effect is observed for photothermia compared to magnetic hyperthermia, while combination of the two modalities into a magneto-photothermal treatment results in a synergistic cytotoxic effect in vitro. The high potential of the Janus nanoparticles for magnetic guiding confirms them to be excellent nanostructures for in vivo magnetically enhanced photothermal therapy, leading to efficient tumor growth inhibition.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleJanus Magnetic‐Plasmonic Nanoparticles for Magnetically Guided and Thermally Activated Cancer Therapyes
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doi10.1002/smll.201904960es
dc.identifier.publicationissue11es
dc.identifier.publicationtitleSmalles
dc.identifier.publicationvolume16es
dc.peerreviewedSIes
dc.description.projectThis work was supported by the European Union (Marie Curie Intra-European Project FP7-PEOPLE-2013-740 IEF-62647). A.E. acknowledges the support by Comunidad de Madrid (Talento project 2018-T1/IND-1005 and NANOMAGCOST project 2018/NMT-4321), MINECO project SEV-2016-0686, and AECC project Ideas Semilla 2019. A.M.-N. acknowledges the support by Comunidad de Madrid (Talento project 2018-T1/IND-10360). C.K. acknowledges financial support from the European Commission under the Marie Skłodowska-Curie program (H2020-MSCA-799393, NANOBIOME). L.M.L.-M. acknowledges support from MINECO project MAT2017-86659-R and Maria de Maeztu Units of Excellence Program from the Spanish State Research Agency (Grant No. MDM-2017-0720). The authors are grateful to Christine Péchoux for TEM preparation (INRA in Jouy-en-Josas, Paris, France), Ludovic Maingault, and Isabelle Le Parco for their help in animal studies (Jacques Monod Institute, Paris, France). The authors thank Andreas Seifert (CIC nanoGUNE) for providing access to the diffuse reflectance setup and scientific discussion. The authors acknowledge the ESRF for beamtime and the CRG beamline BM25-SpLine personnel for technical support. The authors thank for technical and human support provided by SGIker (UPV/EHU/ ERDF, EU).es
dc.identifier.essn1613-6829es
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersiones


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem