Mostrar el registro sencillo del ítem
dc.contributor.author | López‐Hernanz, Lorena | |
dc.contributor.author | Ribón, Javier | |
dc.contributor.author | Sanz‐Sánchez, Fernando | |
dc.contributor.author | Vivas, Liz | |
dc.date.accessioned | 2024-06-13T21:38:41Z | |
dc.date.available | 2024-06-13T21:38:41Z | |
dc.date.issued | 2022 | |
dc.identifier.citation | Proc. London Math. Soc. (3) 2022;125:277–317. | es |
dc.identifier.issn | 0024-6115 | es |
dc.identifier.uri | https://uvadoc.uva.es/handle/10324/68107 | |
dc.description.abstract | Given a germ of biholomorphism 𝐹 ∈ Dif f (ℂ𝑛, 0) with a formal invariant curve Γ such that the multiplier of the restricted formal diffeomorphism 𝐹|Γ is a root of unity or satisfies |(𝐹|Γ)′(0)| < 1, we prove that either Γ is contained in the set of periodic points of 𝐹 or there exists a finite family of stable manifolds of 𝐹 where all the orbits are asymptotic toΓ andwhose union eventually contains every orbit asymptotic to Γ. This result generalizes to the case where Γ is a formal periodic curve. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.publisher | Wiley | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.title | Stable manifolds of biholomorphisms in Cn$\mathbb {C}^n$ asymptotic to formal curves | es |
dc.type | info:eu-repo/semantics/article | es |
dc.identifier.doi | 10.1112/plms.12447 | es |
dc.identifier.publicationfirstpage | 277 | es |
dc.identifier.publicationissue | 2 | es |
dc.identifier.publicationlastpage | 317 | es |
dc.identifier.publicationtitle | Proceedings of the London Mathematical Society | es |
dc.identifier.publicationvolume | 125 | es |
dc.peerreviewed | SI | es |
dc.description.project | The first, second, and third authors were partially supported by Ministerio de Ciencia e Innovación, Spain, process MTM2016-77642-C2-1-P and PID2019-105621GB-I00 | es |
dc.identifier.essn | 1460-244X | es |
dc.type.hasVersion | info:eu-repo/semantics/submittedVersion | es |