Mostrar el registro sencillo del ítem

dc.contributor.authorLópez‐Hernanz, Lorena
dc.contributor.authorRibón, Javier
dc.contributor.authorSanz‐Sánchez, Fernando
dc.contributor.authorVivas, Liz
dc.date.accessioned2024-06-13T21:38:41Z
dc.date.available2024-06-13T21:38:41Z
dc.date.issued2022
dc.identifier.citationProc. London Math. Soc. (3) 2022;125:277–317.es
dc.identifier.issn0024-6115es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/68107
dc.description.abstractGiven a germ of biholomorphism 𝐹 ∈ Dif f (ℂ𝑛, 0) with a formal invariant curve Γ such that the multiplier of the restricted formal diffeomorphism 𝐹|Γ is a root of unity or satisfies |(𝐹|Γ)′(0)| < 1, we prove that either Γ is contained in the set of periodic points of 𝐹 or there exists a finite family of stable manifolds of 𝐹 where all the orbits are asymptotic toΓ andwhose union eventually contains every orbit asymptotic to Γ. This result generalizes to the case where Γ is a formal periodic curve.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherWileyes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.titleStable manifolds of biholomorphisms in Cn$\mathbb {C}^n$ asymptotic to formal curveses
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doi10.1112/plms.12447es
dc.identifier.publicationfirstpage277es
dc.identifier.publicationissue2es
dc.identifier.publicationlastpage317es
dc.identifier.publicationtitleProceedings of the London Mathematical Societyes
dc.identifier.publicationvolume125es
dc.peerreviewedSIes
dc.description.projectThe first, second, and third authors were partially supported by Ministerio de Ciencia e Innovación, Spain, process MTM2016-77642-C2-1-P and PID2019-105621GB-I00es
dc.identifier.essn1460-244Xes
dc.type.hasVersioninfo:eu-repo/semantics/submittedVersiones


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem