Mostrar el registro sencillo del ítem

dc.contributor.authorHernández, Guillermo
dc.contributor.authorGonzález Sánchez, Carlos
dc.contributor.authorGonzález Arrieta, Angélica
dc.contributor.authorSánchez Brizuela, Guillermo
dc.contributor.authorFraile Marinero, Juan Carlos 
dc.date.accessioned2024-06-19T11:56:03Z
dc.date.available2024-06-19T11:56:03Z
dc.date.issued2024
dc.identifier.citationSensors, 2024, Vol. 24, Nº. 10, 3157es
dc.identifier.issn1424-8220es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/68147
dc.descriptionProducción Científicaes
dc.description.abstractLivestock monitoring is a task traditionally carried out through direct observation by experienced caretakers. By analyzing its behavior, it is possible to predict to a certain degree events that require human action, such as calving. However, this continuous monitoring is in many cases not feasible. In this work, we propose, develop and evaluate the accuracy of intelligent algorithms that operate on data obtained by low-cost sensors to determine the state of the animal in the terms used by the caregivers (grazing, ruminating, walking, etc.). The best results have been obtained using aggregations and averages of the time series with support vector classifiers and tree-based ensembles, reaching accuracies of 57% for the general behavior problem (4 classes) and 85% for the standing behavior problem (2 classes). This is a preliminary step to the realization of event-specific predictions.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherMDPIes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectCattlees
dc.subjectGanado vacunoes
dc.subjectAnimal behaviores
dc.subjectAnimales - Hábitos y conductaes
dc.subjectExtensive livestockes
dc.subjectAnimales - Cría y explotaciónes
dc.subjectMachine learninges
dc.subjectAprendizaje automáticoes
dc.subjectMonitoringes
dc.subjectSistema de Monitoreoes
dc.subjectWearable devicees
dc.subjectDetectorses
dc.subjectDetectores
dc.subjectTechnological innovations
dc.titleMachine learning-based prediction of cattle activity using sensor-based dataes
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2024 The authorses
dc.identifier.doi10.3390/s24103157es
dc.relation.publisherversionhttps://www.mdpi.com/1424-8220/24/10/3157es
dc.identifier.publicationfirstpage3157es
dc.identifier.publicationissue10es
dc.identifier.publicationtitleSensorses
dc.identifier.publicationvolume24es
dc.peerreviewedSIes
dc.description.projectMinisterio de Ciencia, Innovación y Universidades, Centro para el Desarrollo Tecnológico y la Innovación (CDTI) y Fondo Europeo de Desarrollo Regional (FEDER)- (grant CIVEX IDI-20180355 and CIVEX IDI-20180354)es
dc.identifier.essn1424-8220es
dc.rightsAtribución 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco5102.11 Ganaderíaes
dc.subject.unesco3104 Producción Animales
dc.subject.unesco1203.25 Diseño de Sistemas Sensoreses
dc.subject.unesco5306.02 Innovación Tecnológicaes


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem