Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/68179
Título
Non-interlaced solutions of 2-dimensional systems of linear ordinary differential equations
Año del Documento
2013
Editorial
AMS
Documento Fuente
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 141, Number 7, July 2013, Pages 2429–2438
Abstract
We consider a 2-dimensional system of linear ordinary differential
equations whose coefficients are definable in an o-minimal structure R. We
prove that either every pair of solutions at 0 of the system is interlaced or the
expansion of R by all solutions at 0 of the system is o-minimal. We also show
that if the coefficients of the system have a Taylor development of sufficiently
large finite order, then the question of which of the two cases holds can be
effectively determined in terms of the coefficients of this Taylor development.
Palabras Clave
Ordinary differential equations, o-minimal structures
ISSN
0002-9939
Revisión por pares
SI
Patrocinador
Second author was partially supported by Ministerio de Ciencia e Innovacióna, Spain, process MTM2010-15471
Propietario de los Derechos
AMS
Idioma
eng
Tipo de versión
info:eu-repo/semantics/submittedVersion
Derechos
restrictedAccess
Aparece en las colecciones
Files in questo item