Mostrar el registro sencillo del ítem
dc.contributor.author | Corral, Nuria | |
dc.contributor.author | Sanz, Fernando | |
dc.date.accessioned | 2024-06-21T17:18:12Z | |
dc.date.available | 2024-06-21T17:18:12Z | |
dc.date.issued | 2011 | |
dc.identifier.citation | Rev Mat Complut (2012) 25:109–124 | es |
dc.identifier.issn | 1139-1138 | es |
dc.identifier.uri | https://uvadoc.uva.es/handle/10324/68187 | |
dc.description.abstract | Let S be a germ of a holomorphic curve at (C2, 0) with finitely many branches S1, . . . , Sr and let I = (I1, . . . , Ir ) ∈ Cr . We show that there exists a nondicritical holomorphic foliation of logarithmic type at 0 ∈ C2 whose set of separatrices is S and having index Ii along Si in the sense of Lins Neto (Lecture Notes in Math. 1345, 192–232, 1988) if the following (necessary) condition holds: after a reduction of singularities π : M →(C2, 0) of S, the vector I gives rise, by the usual rules of transformation of indices by blowing-ups, to systems of indices along components of the total transform ¯S of S at points of the divisor E = π −1(0) satisfying: (a) at any singular point of ¯S the two indices along the branches of ¯S do not belong to Q≥0 and they are mutually inverse; (b) the sum of the indices along a component D of E for all points in D is equal to the self-intersection of D in M. This construction is used to show the existence of logarithmic models of real analytic foliations which are real generalized curves. Applications to real center-focus foliations are considered. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.publisher | Springer | es |
dc.rights.accessRights | info:eu-repo/semantics/restrictedAccess | es |
dc.subject.classification | Singular holomorphic foliation · Logarithmic foliations · Generalized curves · Center-focus plane vector fields | es |
dc.title | Real logarithmic models for real analytic foliations in the plane | es |
dc.type | info:eu-repo/semantics/article | es |
dc.rights.holder | Revista Matemática Complutense | es |
dc.identifier.doi | 10.1007/s13163-011-0060-0 | es |
dc.identifier.publicationfirstpage | 109 | es |
dc.identifier.publicationissue | 1 | es |
dc.identifier.publicationlastpage | 124 | es |
dc.identifier.publicationtitle | Revista Matemática Complutense | es |
dc.identifier.publicationvolume | 25 | es |
dc.peerreviewed | SI | es |
dc.description.project | Both authors were partially supported by the research project MTM2007-66262 (Ministerio de Ciencia e Innovación) and VA059A07 (Junta de Castilla y León). The first author was also partially supported by the research projects MTM2009-14464-C02-02 (Ministerio de Ciencia e Innovación) and Incite09 207 215 PR (Xunta de Galicia). The second author was also partially supported by Plan Nacional de Movilidad de RR.HH. 2008/11, Modalidad “José Castillejo”. | es |
dc.identifier.essn | 1988-2807 | es |
dc.type.hasVersion | info:eu-repo/semantics/submittedVersion | es |