Mostrar el registro sencillo del ítem

dc.contributor.authorCorral, Nuria
dc.contributor.authorSanz, Fernando
dc.date.accessioned2024-06-21T17:18:12Z
dc.date.available2024-06-21T17:18:12Z
dc.date.issued2011
dc.identifier.citationRev Mat Complut (2012) 25:109–124es
dc.identifier.issn1139-1138es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/68187
dc.description.abstractLet S be a germ of a holomorphic curve at (C2, 0) with finitely many branches S1, . . . , Sr and let I = (I1, . . . , Ir ) ∈ Cr . We show that there exists a nondicritical holomorphic foliation of logarithmic type at 0 ∈ C2 whose set of separatrices is S and having index Ii along Si in the sense of Lins Neto (Lecture Notes in Math. 1345, 192–232, 1988) if the following (necessary) condition holds: after a reduction of singularities π : M →(C2, 0) of S, the vector I gives rise, by the usual rules of transformation of indices by blowing-ups, to systems of indices along components of the total transform ¯S of S at points of the divisor E = π −1(0) satisfying: (a) at any singular point of ¯S the two indices along the branches of ¯S do not belong to Q≥0 and they are mutually inverse; (b) the sum of the indices along a component D of E for all points in D is equal to the self-intersection of D in M. This construction is used to show the existence of logarithmic models of real analytic foliations which are real generalized curves. Applications to real center-focus foliations are considered.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherSpringeres
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses
dc.subject.classificationSingular holomorphic foliation · Logarithmic foliations · Generalized curves · Center-focus plane vector fieldses
dc.titleReal logarithmic models for real analytic foliations in the planees
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holderRevista Matemática Complutensees
dc.identifier.doi10.1007/s13163-011-0060-0es
dc.identifier.publicationfirstpage109es
dc.identifier.publicationissue1es
dc.identifier.publicationlastpage124es
dc.identifier.publicationtitleRevista Matemática Complutensees
dc.identifier.publicationvolume25es
dc.peerreviewedSIes
dc.description.projectBoth authors were partially supported by the research project MTM2007-66262 (Ministerio de Ciencia e Innovación) and VA059A07 (Junta de Castilla y León). The first author was also partially supported by the research projects MTM2009-14464-C02-02 (Ministerio de Ciencia e Innovación) and Incite09 207 215 PR (Xunta de Galicia). The second author was also partially supported by Plan Nacional de Movilidad de RR.HH. 2008/11, Modalidad “José Castillejo”.es
dc.identifier.essn1988-2807es
dc.type.hasVersioninfo:eu-repo/semantics/submittedVersiones


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem