Mostrar el registro sencillo del ítem

dc.contributor.authorFortuny, P.
dc.contributor.authorSanz, F.
dc.date.accessioned2024-06-22T10:01:17Z
dc.date.available2024-06-22T10:01:17Z
dc.date.issued2001
dc.identifier.citationJournal of Differential Equations 174, 91 100 (2001)es
dc.identifier.issn0022-0396es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/68193
dc.description.abstractGradient Conjecture states that a solution g of an analytic gradient vector field X approaching to a singularity P of X has a tangent at P. A stronger version asserts that g does not meet an analytic hypersurface an infinite number of times (it is non-oscillating). We prove, in dimension 3, that if g is ``infinitely near'' an analytic curve G not composed of singularities of X, then g is non-oscillating and, moreover, it does not spiral around G in a precise sense.es
dc.format.mimetypeapplication/pdfes
dc.language.isospaes
dc.publisherAcademic Press, Elsevieres
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject.classificationtrajectories of vector fields; gradient conjecture; oscillation; spiralinges
dc.titleGradient Vector Fields Do Not Generate Twister Dynamicses
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holderElsevieres
dc.identifier.doi10.1006/jdeq.2000.3926es
dc.identifier.publicationfirstpage91es
dc.identifier.publicationissue1es
dc.identifier.publicationlastpage100es
dc.identifier.publicationtitleJournal of Differential Equationses
dc.identifier.publicationvolume174es
dc.peerreviewedSIes
dc.description.projectBoth authors partially supported by The European Commission, TMR Network ``Singularidades de Ecuaciones Diferenciales y Foliaciones'' ERBF MRXCT 96-0040.es
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem