• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo UVaDOCComunidadesPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    Acceder

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Bioquímica y Biología Molecular y Fisiología
    • DEP06 - Artículos de revista
    • Ver ítem
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Bioquímica y Biología Molecular y Fisiología
    • DEP06 - Artículos de revista
    • Ver ítem
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/6844

    Título
    Synthesis and Release of Catecholamines by the Cat Carotid Body in Vitro: Effects of Hypoxic Stimulation
    Autor
    Rigual Bonastre, Ricardo JaimeAutoridad UVA
    González, E.
    González Martínez, Constancio
    Fidone, Salvatore
    Año del Documento
    1986
    Editorial
    Elsevier
    Descripción
    Producción Científica
    Documento Fuente
    Brain Research, 1986, vol. 374, p.101-109
    Resumen
    The role of catecholamines (CAs) in cat carotid body chemoreception has been controversial. On the basis of pharmacological experiments, it would appear that endogenous dopamine (DA) may act either as an inhibitory or excitatory transmitter. Neurochemical studies on the effects of natural stimulation on the release of carotid body CAs in the cat have also been inconclusive. In the present study, we have characterized the synthesis and release of CAs in the in vitro cat carotid body preparation in response to different levels of hypoxic stimulation and have correlated these measures with the chemosensory activity of the carotid sinus nerve. The synthesis of [3H]DA and [3H]norepinephrine was linear for at least 4 h in carotid bodies incubated with their natural precursor [~H]tyrosine. Synthesis of both [3H]CAs plateaued when the [3H]tyrosine concentration in the media reached 40 uM, which is a concentration similar to that found in cat plasma. Exposure of the animals to an atmosphere of 10% 02 in N~ for 3 h prior to removal and incubation of the carotid bodies with [3H]tyrosine resulted in an approximately 100% increase in the rate of [3H]DA synthesis but no change in [3H]norepinephrine synthesis. This selective increase in [3H]DA synthesis was not detected when [3H]dihydroxyphenylalanine was used as precursor. Carotid bodies first incubated with [3H]tyrosine and later superfused with solutions equilibrated with different gas mixtures (0 100% 0 2 in N2) exhibited an increase in [3H]DA release and carotid sinus nerve discharge which were inversely related to the oxygen concentration. This relationship was strongest for the weaker stimuli (between 50% and 20% O 2 in N2), where both nerve activity and [3H]DA release increased almost in parallel. With lower oxygen concentrations (10% O 2 and 0% 02 equilibrated solutions), the increase in the release of [3H]DA was proportionally greater than the increase in carotid sinus nerve discharge. Our results demonstrate that hypoxic stimulation increases both the rate of synthesis and release of DA in the cat carotid body. Although the precise role of DA in this chemoreceptor organ is presently unknown, our findings suggest that this biogenic amine plays a direct role in generating or controlling the electrical activity in the carotid sinus nerve. INTRODUCTION The mammalian carotid body is an arterial chemoreceptor organ activated by low paO2, low pH and high p~CO2 (ref. 21). Structurally, the receptor complex is formed by clusters of two types of cells, the type I and type II cells; the clusters lie within a supporting connective tissue matrix containing a dense capillary net24, 41. Sensory fibers of the carotid sinus nerve (CSN) penetrate these cell clusters to end in synaptic apposition with type I cells, which are considered to be preneural (receptor) elements. Two perennial issues pertaining to arterial chemoreception, concern first, whether the type 1 cells are in fact
    Materias (normalizadas)
    Neurofisiología
    ISSN
    0006-8993
    Revisión por pares
    SI
    DOI
    10.1016/0006-8993(86)90398-7
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/6844
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP06 - Artículos de revista [352]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    Constancio 10.pdf
    Tamaño:
    778.9Kb
    Formato:
    Adobe PDF
    Descripción:
    PD-167
    Thumbnail
    Visualizar/Abrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternationalLa licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10