Mostrar el registro sencillo del ítem

dc.contributor.authorValdivia, Maria Pia
dc.contributor.authorIzquierdo, Luisa
dc.contributor.authorVeloso, Felipe
dc.contributor.authorTruong, Ann
dc.contributor.authorHu, Hanyu
dc.contributor.authorDilworth, Noah
dc.contributor.authorBott-Suzuki, Simon C.
dc.contributor.authorBouffetier, Victorien
dc.contributor.authorPérez Callejo, Gabriel 
dc.date.accessioned2024-08-16T10:04:39Z
dc.date.available2024-08-16T10:04:39Z
dc.date.issued2024
dc.identifier.citationIEEE Transactions on Plasma Science, vol. 52, n. 6.es
dc.identifier.issn0093-3813es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/69349
dc.descriptionProducción Científicaes
dc.description.abstractWe present the analysis of interferometry diagnostics with the user-friendly Talbot Numerical Tool (TNT), a Fourier-based postprocessing code that enables real-time assessment of plasma systems. TNT performance was explored with visible and infrared interferometry in pulsed-power-driven Z -pinch configurations to expand its capabilities beyond Talbot X-ray interferometry in the high-intensity laser environment. TNT enabled accurate electron density characterization of magnetically driven plasma flows and shocks through phase-retrieval methods that did not require data modification or masking. TNT demonstrated enhanced resolution, detecting below 4% fringe shift, which corresponds to 8.7×1e15cm−2 within 28μm, approaching the laser probing system limit. TNT was tested against a well-known interferometry analysis software, delivering an average resolving power nearly ten times better (∼28μm versus ∼210μm) when resolving plasma ablation features. TNT demonstrated higher sensitivity when probing sharp electron density gradients in supersonic shocks. A maximum electron areal density of 4.1×1e17cm−2 was measured in the shocked plasma region, and a minimum electron density detection of ∼ 1.0×1e15cm−2 was achieved. When probing colliding plasma flows, the calculations of the effective adiabatic index and the associated errors were improved from γ∗=2.6±1.6 –1.4±0.2 with TNT postprocessing, contributing valuable data for the interpretation of radiative transport. Additional applications of TNT in the characterization of pulsed-power plasmas and beyond are discussed.es
dc.format.mimetypeapplication/pdfes
dc.language.isospaes
dc.publisherInstitute of Electrical ad Electronics Engineerses
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses
dc.subjectFísicaes
dc.subject.classificationPlasmases
dc.subject.classificationInterferometryes
dc.subject.classificationCodeses
dc.subject.classificationWirees
dc.subject.classificationElectronses
dc.subject.classificationElectric shockes
dc.subject.classificationAccuracyes
dc.titleZ-Pinch Interferometry Analysis With the Fourier-Based TNT Codees
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holderInstitute of Electrical and Electronics Engineerses
dc.identifier.doi10.1109/TPS.2024.3420910es
dc.relation.publisherversionhttps://ieeexplore.ieee.org/document/10633898es
dc.identifier.publicationissue6es
dc.identifier.publicationtitleIEEE Transactions on Plasma Sciencees
dc.identifier.publicationvolume52es
dc.peerreviewedSIes
dc.description.projectThe work presented was supported by Research Grant No. PID2022-137632OB-I00 from the Spanish Ministry of Science and Innovationes
dc.identifier.essn1939-9375es
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersiones


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem