Mostrar el registro sencillo del ítem

dc.contributor.authorObaya, Rafael 
dc.date.accessioned2024-09-11T14:39:33Z
dc.date.available2024-09-11T14:39:33Z
dc.date.issued2023
dc.identifier.citationDiscrete and Continuous Dynamical Systems B, Vol 28, Num 1, 426-448es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/69703
dc.description.abstractIn this work we will study the structure of the skew-product attractor for a planar diffusively coupled ordinary differential equation, given by $\dot{x}= k(y-x)+x-\beta(t)x^3$ and $\dot{y}= k(x-y)+y-\beta(t)y^3$, $t\geq 0$. We identify the non-autonomous structures that completely describes the dynamics of this model giving a Morse decomposition for the skew-product attractor. The complexity of the isolated invariant sets in the global attractor of the associated skew-product semigroup is associated to the complexity of the attractor of the associated driving semigroup. In particular, if $\beta$ is asymptotically almost periodic, the isolated invariant sets will be almost periodic hyperbolic global solutions of an associated globally defined problem.es
dc.format.mimetypeapplication/pdfes
dc.language.isospaes
dc.publisherAmerican Institute of mathematicses
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.titleStructure of non-autonomous attractors for a class of diffusively coupled ODEes
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doiDOI: https://doi.org/10.3934/dcdsb.2022083es
dc.relation.publisherversionhttps://www.aimsciences.org/article/doi/10.3934/dcdsb.2022083es
dc.peerreviewedSIes
dc.description.projectFeder Ministerio de Economía y Competitividad MTM2015-66330-P , RTI2018-096523-B-I00 y Universidad de Valladolid PIP-TCESC-2020es
dc.type.hasVersioninfo:eu-repo/semantics/draftes


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem