Mostrar el registro sencillo del ítem
dc.contributor.author | Obaya, Rafael | |
dc.date.accessioned | 2024-09-11T14:39:33Z | |
dc.date.available | 2024-09-11T14:39:33Z | |
dc.date.issued | 2023 | |
dc.identifier.citation | Discrete and Continuous Dynamical Systems B, Vol 28, Num 1, 426-448 | es |
dc.identifier.uri | https://uvadoc.uva.es/handle/10324/69703 | |
dc.description.abstract | In this work we will study the structure of the skew-product attractor for a planar diffusively coupled ordinary differential equation, given by $\dot{x}= k(y-x)+x-\beta(t)x^3$ and $\dot{y}= k(x-y)+y-\beta(t)y^3$, $t\geq 0$. We identify the non-autonomous structures that completely describes the dynamics of this model giving a Morse decomposition for the skew-product attractor. The complexity of the isolated invariant sets in the global attractor of the associated skew-product semigroup is associated to the complexity of the attractor of the associated driving semigroup. In particular, if $\beta$ is asymptotically almost periodic, the isolated invariant sets will be almost periodic hyperbolic global solutions of an associated globally defined problem. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | spa | es |
dc.publisher | American Institute of mathematics | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.title | Structure of non-autonomous attractors for a class of diffusively coupled ODE | es |
dc.type | info:eu-repo/semantics/article | es |
dc.identifier.doi | DOI: https://doi.org/10.3934/dcdsb.2022083 | es |
dc.relation.publisherversion | https://www.aimsciences.org/article/doi/10.3934/dcdsb.2022083 | es |
dc.peerreviewed | SI | es |
dc.description.project | Feder Ministerio de Economía y Competitividad MTM2015-66330-P , RTI2018-096523-B-I00 y Universidad de Valladolid PIP-TCESC-2020 | es |
dc.type.hasVersion | info:eu-repo/semantics/draft | es |