Mostrar el registro sencillo del ítem
dc.contributor.author | Santamaria-Valenzuela, Inmaculada | |
dc.contributor.author | Carratalá-Sáez, Rocío | |
dc.contributor.author | Torres, Yuri | |
dc.contributor.author | Llanos, Diego R. | |
dc.contributor.author | Gonzalez-Escribano, Arturo | |
dc.date.accessioned | 2024-09-15T08:52:24Z | |
dc.date.available | 2024-09-15T08:52:24Z | |
dc.date.issued | 2024 | |
dc.identifier.citation | Performance improvement of the triangular matrix product in commodity clusters, I. Santamaria-Valenzuela, R. Carratalá-Sáez, Y. Torres, Diego R. Llanos, A. Gonzalez-Escribano. The Journal of Supercomputing, vol. 80, pp 166320-16653, 2024 | es |
dc.identifier.issn | 0920-8542 | es |
dc.identifier.uri | https://uvadoc.uva.es/handle/10324/69760 | |
dc.description.abstract | There are many works devoted to improving the matrix product computation, as it is used in a wide variety of scientific applications arising from many different fields. In this work, we propose alternative data distribution policies and communication patterns to reduce the elapsed time when computing triangular matrix products in distributed memory environments. In particular, we focus on commodity clusters, where the number of nodes is limited, proposing alternatives to traditional approaches in order to improve this operation’s performance. Our proposal overcomes the performance results associated with the state-of-the-art libraries, such as ScaLAPACK and SLATE, offering execution times that are up to 30% faster. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.publisher | Springer | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.subject | Informática | es |
dc.subject.classification | Commodity clusters · Triangular matrix product · TRMM · SLATE · ScaLAPACK | es |
dc.title | Performance improvement of the triangular matrix product in commodity clusters | es |
dc.type | info:eu-repo/semantics/article | es |
dc.identifier.doi | 10.1007/s11227-024-06097-7 | es |
dc.relation.publisherversion | https://link.springer.com/article/10.1007/s11227-024-06097-7 | es |
dc.identifier.publicationfirstpage | 16630 | es |
dc.identifier.publicationissue | 11 | es |
dc.identifier.publicationlastpage | 16653 | es |
dc.identifier.publicationtitle | The Journal of Supercomputing | es |
dc.identifier.publicationvolume | 80 | es |
dc.peerreviewed | SI | es |
dc.description.project | This work was supported in part by the Spanish Ministerio de Ciencia e Innovación and by the European Regional Development Fund (ERDF) program of the European Union, under Grant PID2022-142292NB-I00 (NATASHA Project); and in part by the Junta de Castilla y León - FEDER Grants, under Grant VA226P20 (PROPHET-2 Project), Junta de Castilla y León, Spain. This work was also supported in part by grant TED2021-130367B-I00, funded by MCIN/AEI/10.13039/501100011033 and by “European Union NextGenerationEU/PRTR“. The CESGA - Finisterrae III supercomputing resources were accessed thanks to the project IM-2023-3-0020 from the Red Española de Supercomputación (RES). | es |
dc.identifier.essn | 1573-0484 | es |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es |
dc.subject.unesco | 1203 Ciencia de Los Ordenadores | es |
dc.subject.unesco | 3304 Tecnología de Los Ordenadores | es |