Mostrar el registro sencillo del ítem

dc.contributor.authorSantamaria-Valenzuela, Inmaculada
dc.contributor.authorCarratalá-Sáez, Rocío
dc.contributor.authorTorres, Yuri
dc.contributor.authorLlanos, Diego R.
dc.contributor.authorGonzalez-Escribano, Arturo
dc.date.accessioned2024-09-15T08:52:24Z
dc.date.available2024-09-15T08:52:24Z
dc.date.issued2024
dc.identifier.citationPerformance improvement of the triangular matrix product in commodity clusters, I. Santamaria-Valenzuela, R. Carratalá-Sáez, Y. Torres, Diego R. Llanos, A. Gonzalez-Escribano. The Journal of Supercomputing, vol. 80, pp 166320-16653, 2024es
dc.identifier.issn0920-8542es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/69760
dc.description.abstractThere are many works devoted to improving the matrix product computation, as it is used in a wide variety of scientific applications arising from many different fields. In this work, we propose alternative data distribution policies and communication patterns to reduce the elapsed time when computing triangular matrix products in distributed memory environments. In particular, we focus on commodity clusters, where the number of nodes is limited, proposing alternatives to traditional approaches in order to improve this operation’s performance. Our proposal overcomes the performance results associated with the state-of-the-art libraries, such as ScaLAPACK and SLATE, offering execution times that are up to 30% faster.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherSpringeres
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.subjectInformáticaes
dc.subject.classificationCommodity clusters · Triangular matrix product · TRMM · SLATE · ScaLAPACKes
dc.titlePerformance improvement of the triangular matrix product in commodity clusterses
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doi10.1007/s11227-024-06097-7es
dc.relation.publisherversionhttps://link.springer.com/article/10.1007/s11227-024-06097-7es
dc.identifier.publicationfirstpage16630es
dc.identifier.publicationissue11es
dc.identifier.publicationlastpage16653es
dc.identifier.publicationtitleThe Journal of Supercomputinges
dc.identifier.publicationvolume80es
dc.peerreviewedSIes
dc.description.projectThis work was supported in part by the Spanish Ministerio de Ciencia e Innovación and by the European Regional Development Fund (ERDF) program of the European Union, under Grant PID2022-142292NB-I00 (NATASHA Project); and in part by the Junta de Castilla y León - FEDER Grants, under Grant VA226P20 (PROPHET-2 Project), Junta de Castilla y León, Spain. This work was also supported in part by grant TED2021-130367B-I00, funded by MCIN/AEI/10.13039/501100011033 and by “European Union NextGenerationEU/PRTR“. The CESGA - Finisterrae III supercomputing resources were accessed thanks to the project IM-2023-3-0020 from the Red Española de Supercomputación (RES).es
dc.identifier.essn1573-0484es
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco1203 Ciencia de Los Ordenadoreses
dc.subject.unesco3304 Tecnología de Los Ordenadoreses


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem