Mostrar el registro sencillo del ítem

dc.contributor.authorCisternas, Eduardo
dc.contributor.authorAguilera del Toro, Rodrigo Humberto 
dc.contributor.authorAguilera Granja, Juan Faustino
dc.contributor.authorVogel, Eugenio E.
dc.date.accessioned2024-09-27T11:42:06Z
dc.date.available2024-09-27T11:42:06Z
dc.date.issued2024
dc.identifier.citationNanomaterials, 2024, Vol. 14, Nº. 14, 1224es
dc.identifier.issn2079-4991es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/70217
dc.descriptionProducción Científicaes
dc.description.abstract(TiO2) is both a natural and artificial compound that is transparent under visible and near-infrared light. However, it could be prepared with other metals, substituting for Ti, thus changing its properties. In this article, we present density functional theory calculations for Ti(1−x)AxO2, where A stands for any of the eight following neutral substitutional impurities, Fe, Ni, Co, Pd, Pt, Cu, Ag and Au, based on the rutile structure of pristine TiO2. We use a fully unconstrained version of the density functional method with generalized gradient approximation plus the U exchange and correlation, as implemented in the Quantum Espresso free distribution. Within the limitations of a finite-size cell approximation, we report the band structure, energy gaps and absorption spectrum for all these cases. Rather than stressing precise values, we report on two general features: the location of the impurity levels and the general trends of the optical properties in the eight different systems. Our results show that all these substitutional atoms lead to the presence of electronic levels within the pristine gap, and that all of them produce absorptions in the visible and near-infrared ranges of electromagnetic radiation. Such results make these systems interesting for the fabrication of solar cells. Considering the variety of results, Ni and Ag are apparently the most promising substitutional impurities with which to achieve better performance in capturing the solar radiation on the planet’s surface.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherMDPIes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectDFT calculationses
dc.subjectFuncionaleses
dc.subjectMaterials - Optical propertieses
dc.subjectMateriales - Propiedades ópticases
dc.subjectElectronic materialses
dc.subjectNanomateriales
dc.subjectCondensed Matter Physicses
dc.subjectFísica de la materia condensadaes
dc.subjectMaterials sciencees
dc.subjectCiencia de los materialeses
dc.titleEffect of substitutional metallic impurities on the optical absorption properties of TiO2es
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2024 The authorses
dc.identifier.doi10.3390/nano14141224es
dc.relation.publisherversionhttps://www.mdpi.com/2079-4991/14/14/1224es
dc.identifier.publicationfirstpage1224es
dc.identifier.publicationissue14es
dc.identifier.publicationtitleNanomaterialses
dc.identifier.publicationvolume14es
dc.peerreviewedSIes
dc.description.projectUniversidad de La Frontera de Chile - (proyecto DIUFRO DI23-0026)es
dc.description.projectInstituto Potosino de Investigación Científica y Tecnológica (IPICYT), Consejo Nacional de Humanidades, Ciencias y Tecnologías (Conahcyt) de Mejico - (project TKII-E-0424-I-090424-20/PR-22)es
dc.description.projectFondo Nacional de Desarrollo Científico y Tecnológico (Fondecyt) de Chile - (grant 1230055)es
dc.description.projectCentro para el Desarrollo de la Nanociencia y la Nanotecnología (CEDENNA) de Chile - (grant AFB220001es
dc.identifier.essn2079-4991es
dc.rightsAtribución 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco22 Físicaes


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem