Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/70833
Título
Global Invariant Branches of non-degenerate Foliations on Projective Toric Surfaces
Autor
Año del Documento
2022
Editorial
Moscow Mathematical Journal
Documento Fuente
Moscow Mathematical Journal, 2022, vol. 22, n.3, 493--520
Résumé
We prove that the isolated invariant branches of a weak toric type generalized curve de fined over a projective toric ambient sur-
faces extend to projective algebraic curves. To do it, we pass through the characterization of the weak toric type foliations in terms of "Newton non-degeneracy" conditions, in the classical sense of Kouchnirenko and Oka. Finally, under the strongest hypothesis of being a toric type foliation, we nd that there is a dichotomy: Either it has rational fi rst integral but does not have isolated invariant branches or it has finitely many global invariant curves and all of them are extending isolated invariant branches.
Materias (normalizadas)
Foliación
Materias Unesco
1201.01 Geometría Algebraica
Palabras Clave
Singular foliations
Invariant curves
Newton polygons
Toric surfaces
ISSN
1609-4514
Revisión por pares
SI
Patrocinador
Ministerio de Educación, Cultura y Deporte of Spain
(FPU14/02653 grant) and by the Ministerio de Economía y Competitividad from Spain, under the Project “Algebra y geometría en sistemas dinámicos y foliaciones singulares.” (Ref.: MTM2016-77642-C2-1-P)
Version del Editor
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Fichier(s) constituant ce document
Tamaño:
454.7Ko
Formato:
Adobe PDF
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Attribution-NonCommercial-NoDerivatives 4.0 Internacional