Show simple item record

dc.contributor.authorOrtega Arranz, Héctor 
dc.contributor.authorTorres de la Sierra, Yuri 
dc.contributor.authorGonzález Escribano, Arturo 
dc.contributor.authorLlanos Ferraris, Diego Rafael 
dc.date.accessioned2024-10-16T07:51:36Z
dc.date.available2024-10-16T07:51:36Z
dc.date.issued2014
dc.identifier.citationHiPEAC 2014 Workshop on High-Level Parallel Programming for GPUs (HLPGPU), Vienna, Austria.es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/70853
dc.descriptionProducción Científicaes
dc.description.abstractDuring the last decade, parallel processor architectures have become a powerful tool to deal with massively-parallel problems that require High Performance Computing (HPC). The last trend of HPC is the use of heterogeneous environments, that combine different computational power units, such as CPU-cores and GPUs. Performance maximization of any GPU parallel implementation of an algorithm requires an in-depth knowledge about its underlying architecture, becoming a tedious task only suited for experienced programmers. In this paper we present TuCCompi, a multi-layer framework that not only transparently exploits heterogeneous systems, but automatically tunes the GPU capabilities by choosing the optimal values for their configuration parameters, using the kernel characterization provided by the programmer. This model is very useful to tackle problems characterized by independent , high computational-load tasks with none or few communications , such as embarrassingly-parallel problems. We have evaluated TuCCompi in different, real-world heterogeneous environments using the APSP problem as a case study.es
dc.format.extent10 p.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.subjectInformáticaes
dc.subject.classificationAPSPes
dc.subject.classificationAuto-Tuninges
dc.subject.classificationCUDAes
dc.subject.classificationGPUes
dc.subject.classificationHeterogeneous systemes
dc.subject.classificationHPC frameworkes
dc.subject.classificationMPIes
dc.subject.classificationOpenMPes
dc.subject.classificationParallel modeles
dc.titleTuCCompi: a multi-layer programing model for heterogeneous systems with auto-tuning capabilitieses
dc.title.alternativeTuCCompi: a multi-layer programing model for heterogeneous systems with auto-tuning capabilitieses
dc.typeinfo:eu-repo/semantics/conferenceObjectes
dc.identifier.doi10.5281/zenodo.13938421es
dc.relation.publisherversionhttps://www.researchgate.net/publication/384945632_TuCCompi_A_Multi-Layer_Programing_Model_for_Heterogeneous_Systems_with_Auto-Tuning_Capabilitieses
dc.title.eventHiPEAC 2014 Workshop on High-Level Parallel Programming for GPUs (HLPGPU)es
dc.description.projectThis research is partly sup-ported by the Spanish Government (TIN2007-62302, TIN2011-25639, CENIT OCEANLIDER, CAPAP-H networks TIN2010-12011-E and TIN2011-15734-E), Junta de Castilla y Le ́on, Spain(VA094A08, VA172A12-2), and the HPC-EUROPA2 project (projectnumber: 228398) with the support of the European Commission -Capacities Area - Research Infrastructures Initiative and the Com-plexHPC COST Action.es
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco1203 Ciencia de Los Ordenadoreses
dc.subject.unesco3304 Tecnología de Los Ordenadoreses


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record