Mostrar el registro sencillo del ítem

dc.contributor.advisorLópez Reyes, Guillermo Eduardo es
dc.contributor.advisorJulve González, Sofia es
dc.contributor.authorRenedo Sánchez-Girón, Pilar
dc.contributor.editorUniversidad de Valladolid. Facultad de Ciencias es
dc.date.accessioned2024-10-28T16:30:36Z
dc.date.available2024-10-28T16:30:36Z
dc.date.issued2024
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/70999
dc.description.abstractMars exploration is gaining more relevance as new advances in technology have allowed us to study its composition through rovers capable of landing on its surface. Due to the large amount of mineralogical data they collect, it is necessary to implement machine learning techniques to classify these samples. Thanks to the SuperCam tool of the Perseverance rover, it is possible to perform Raman and FTIR spectrometries in situ on the red planet. In this work, several classification algorithms for garnets trained using band parameters, PCA, and fusion of Raman and FTIR data are proposed with the aim of determining which one presents higher precision.es
dc.description.sponsorshipDepartamento de Física Aplicadaes
dc.format.mimetypeapplication/pdfes
dc.language.isospaes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject.classificationEspectroscopía Raman y FTIRes
dc.subject.classificationMartees
dc.subject.classificationGranateses
dc.titleEvaluación y combinación de datos espectroscópicos de los granates como análogos minerales para el estudio de Martees
dc.typeinfo:eu-repo/semantics/bachelorThesises
dc.description.degreeGrado en Físicaes
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem