Show simple item record

dc.contributor.authorOrtega Arranz, Héctor 
dc.contributor.authorTorres de la Sierra, Yuri 
dc.contributor.authorGonzález Escribano, Arturo 
dc.contributor.authorLlanos Ferraris, Diego Rafael 
dc.date.accessioned2024-10-30T16:53:05Z
dc.date.available2024-10-30T16:53:05Z
dc.date.issued2013
dc.identifier.citationConference: Computational and Mathematical Methods in Science and Engineering, CMMSE 2013, Almería, Spain, ISBN 978-84-616-2723-3es
dc.identifier.isbn978-84-616-2723-3es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/71120
dc.descriptionProducción Científicaes
dc.description.abstractThe All-Pair Shortest-Path (APSP) problem is a well-known problem in graph theory whose objective is to find the shortest paths between any pair of nodes. Computing the distances from one source node to the rest and repeating this process for every node of the graph is an adequate solution for sparse graphs. During the last years the application of GPU devices have increased to accelerate this kind of problems. While the correctness of an NVIDIA CUDA implementation of this algorithm is easy to achieve, exploiting the GPU capabilities to obtain a good performance is a task for CUDA experienced programmers. A typical code tuning strategy is the selection of an appropriate threadBlocks size. Besides this, the concurrent deployment of several kernels that computes distances from different sources, also accelerates the execution times. In this paper we show that an adequate combination of both strategies represents a 11.5 % performance improvement between different, recommended CUDA configurations for the most costly kernel of the APSP problem.es
dc.format.extent12 p.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherUniversidad de Salamancaes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.subjectInformáticaes
dc.subject.classificationAPSPes
dc.subject.classificationConcurrent-kerneles
dc.subject.classificationDijkstraes
dc.subject.classificationGPUes
dc.subject.classificationSSSPes
dc.subject.classificationThreadBlock sizees
dc.titleA Tuned, Concurrent-Kernel Approach to Speed Up the APSP problemes
dc.typeinfo:eu-repo/semantics/conferenceObjectes
dc.identifier.doi10.5281/zenodo.14014033es
dc.relation.publisherversionhttps://www.researchgate.net/publication/237149119_A_Tuned_Concurrent-Kernel_Approach_to_Speed_Up_the_APSP_problemes
dc.title.eventComputational and Mathematical Methods in Science and Engineering, CMMSE 2013es
dc.description.projectThis research is partly supported by the Spanish Government (TIN2007-62302, TIN2011-25639, CENIT OCEANLIDER, CAPAP-H networks TIN2010-12011-E and TIN2011-15734-E), Junta de Castilla y León, Spain (VA094A08, VA172A12-2), the HPC-EUROPA2 project (project number: 228398) with the support of the European Commission - Capacities Area - Research Infrastructures Initiative, and the ComplexHPC COST Actiones
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco1203 Ciencia de Los Ordenadoreses
dc.subject.unesco3304 Tecnología de Los Ordenadoreses


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record