Mostrar el registro sencillo del ítem

dc.contributor.authorMolina Samper, Beatriz 
dc.date.accessioned2024-11-04T14:25:27Z
dc.date.available2024-11-04T14:25:27Z
dc.date.issued2021
dc.identifier.citationB. Molina-Samper, Newton non-degenerate foliations and blowing-ups, Bull. Sci. Math. 162 (2020) 102872, https://doi .org /10 .1016 /j .bulsci .2020 .102872.es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/71170
dc.description.abstractA codimension one singular holomorphic foliation is Newton non-degenerate if it satisfies some non-degeneracy conditions, in terms of its Newton polyhedra system. These conditions are similar to the ones of Kouchnirenko and Oka for the case of functions. We introduce the concept of logarithmic reduction of singularities and we prove that a foliation is Newton non-degenerate if and only if it admits a logarithmic reduction of singularities of a combinatorial nature.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherElsevieres
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.titleNewton non-degenerate foliations and blowing-upses
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doihttps://doi.org/10.1016/j.bulsci.2020.102872es
dc.peerreviewedSIes
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem