Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/72365
Título
Clustering alternatives in preference-approvals via novel pseudometrics
Año del Documento
2023
Editorial
Springer
Descripción
Producción Científica
Documento Fuente
Statistical Methods & Applications, 2024, vol. 33, n. 1, pp. 61-87
Abstract
Preference-approval structures combine preference rankings and approval voting for declaring opinions over a set of alternatives. In this paper, we propose a new procedure for clustering alternatives in order to reduce the complexity of the preference-approval space and provide a more accessible interpretation of data. To that end, we present a new family of pseudometrics on the set of alternatives that take into account voters’ preferences via preference-approvals. To obtain clusters, we use the Ranked k-medoids (RKM) partitioning algorithm, which takes as input the similarities between pairs of alternatives based on the proposed pseudometrics. Finally, using non-metric multidimensional scaling, clusters are represented in 2-dimensional space.
Palabras Clave
Preference-approvals
Pseudometric
Clustering
Non metric multidimensional scaling
Voting systems
ISSN
1618-2510
Revisión por pares
SI
Patrocinador
Este trabajo forma parte del proyecto de investigación PID2021-122506NB-I00. Toma de decisiones basadas en valoraciones cualitativas y ordinales. Fondos FEDER, MICINN. Ministerio de Ciencia e Innovación, Agencia Estatal de Investiagación, Unión Europea
Version del Editor
Propietario de los Derechos
© 2023, The Author(s)
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Collections
Files in this item
Except where otherwise noted, this item's license is described as Atribución 4.0 Internacional