Show simple item record

dc.contributor.authorGarcía Llamas, Paula
dc.contributor.authorSuárez Seoane, Susana
dc.contributor.authorFernández Guisuraga, José Manuel
dc.contributor.authorFernández García, Victor
dc.contributor.authorFernández Manso, Alfonso
dc.contributor.authorQuintano Pastor, María del Carmen 
dc.contributor.authorTaboada, Angela
dc.contributor.authorMarcos, Elena
dc.contributor.authorCalvo, Leonor
dc.date.accessioned2024-12-11T17:51:42Z
dc.date.available2024-12-11T17:51:42Z
dc.date.issued2019
dc.identifier.citationInternational Journal of Applied Earth Observation and Geoinformation, 2019, vol. 80, p. 137-144.es
dc.identifier.issn1569-8432
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/72416
dc.descriptionProducción Científica
dc.description.abstractThe development of improved spatial and spectral resolution sensors provides new opportunities to assess burn severity more accurately. This study evaluates the ability of remote sensing indices derived from three remote sensing sensors (i.e., Landsat 8 OLI/TIRS, Sentinel-2 MSI and Deimos-1 SLIM-6-22) to assess burn severity (site, vegetation and soil burn severity). As a case study, we used a megafire (9,939 ha) that occurred in a Mediterranean ecosystem in northwestern Spain. Remote sensing indices included seven reflective, two thermal and four mixed indices, which were derived from each satellite and were validated with field burn severity metrics obtained from CBI index. Correlation patterns of field burn severity and remote sensing indices were relatively consistent across the different sensors. Additionally, regardless of the sensor, indices that incorporated SWIR bands (i.e., NBR-based indices), exceed those using red and NIR bands, and thermal and mixed indices. High resolution Sentinel-2 imagery only slightly improved the performance of indices based on NBR compared to Landsat 8. The dNDVI index from Landsat 8 and Sentinel-2 images showed relatively similar correlation values to NBR-based indices for site and soil burn severity, but showed limitations using Deimos-1. In general, mono-temporal and relativized indices better correlated with vegetation burn severity in heterogeneous systems than differenced indices. This study showed good potential for Landsat 8 OLI/TIRS and Sentinel-2 MSI for burn severity assessment in fire-prone heterogeneous ecosystems, although we highlight the need for further evaluation of Deimos-1 SLIM-6-22 in different fire scenarios, especially using bi-temporal indices.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherElsevieres
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.classificationComposition Burn Index
dc.subject.classificationRemote sensing
dc.subject.classificationThermal indices
dc.subject.classificationSpectral indices
dc.titleEvaluation and comparison of Landsat 8, Sentinel-2 and Deimos-1 remote sensing indices for assessing burn severity in Mediterranean fire-prone ecosystemses
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holderElsevieres
dc.identifier.doi10.1016/j.jag.2019.04.006es
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/abs/pii/S030324341930176Xes
dc.peerreviewedSIes
dc.description.projectMinisterio de Economía y Competitividad (proyectos GESFIRE AGL2013-48189-C2-1-R, FIRESEVES AGL2017-86075-C2-1-R)
dc.description.projectJunta de Castilla y León (proyectos FIRECYL LE033U14, SEFIRECYL LE001P17)
dc.rightsAtribución-NoComercial-SinDerivados 4.0 Internacional
dc.type.hasVersioninfo:eu-repo/semantics/submittedVersiones


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record