Mostrar el registro sencillo del ítem

dc.contributor.authorGutierrez De Pablo, Victor 
dc.contributor.authorPoza Crespo, Jesús 
dc.contributor.authorMaturana Candelas, Aaron 
dc.contributor.authorRodríguez González, Víctor 
dc.contributor.authorTola Arribas, Miguel Ángel 
dc.contributor.authorCano, Mónica
dc.contributor.authorHoshi, Hideyuki
dc.contributor.authorShigihara, Yoshihito
dc.contributor.authorHornero Sánchez, Roberto 
dc.contributor.authorGómez Peña, Carlos 
dc.date.accessioned2025-01-07T08:22:26Z
dc.date.available2025-01-07T08:22:26Z
dc.date.issued2024
dc.identifier.citationComputer Methods and Programs in Biomedicine, junio 2024, vol. 250, 108197es
dc.identifier.issn0169-2607es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/73055
dc.descriptionProducción Científicaes
dc.description.abstractBackground and Objective: Alzheimer’s disease (AD) is a neurological disorder that impairs brain functions associated with cognition, memory, and behavior. Noninvasive neurophysiological techniques like magnetoencephalography (MEG) and electroencephalography (EEG) have shown promise in reflecting brain changes related to AD. These techniques are usually assessed at two levels: local activation (spectral, nonlinear, and dynamic properties) and global synchronization (functional connectivity, frequency-dependent network, and multiplex network organization characteristics). Nonetheless, the understanding of the organization formed by the existing relationships between these levels, henceforth named neurophysiological organization, remains unexplored. This work aims to assess the alterations AD causes in the resting-state neurophysiological organization. Methods: To that end, three datasets from healthy controls (HC) and patients with dementia due to AD were considered: MEG database (55 HC and 87 patients with AD), EEG1 database (51 HC and 100 patients with AD), and EEG2 database (45 HC and 82 patients with AD). To explore the alterations induced by AD in the relationships between several features extracted from M/EEG data, association networks (ANs) were computed. ANs are graphs, useful to quantify and visualize the intricate relationships between multiple features. Results: Our results suggested a disruption in the neurophysiological organization of patients with AD, exhibiting a greater inclination towards the local activation level; and a significant decrease in the complexity and diversity of the ANs (p-value ¡ 0.05, Mann–Whitney U-test, Bonferroni correction). This effect might be due to a shift of the neurophysiological organization towards more regular configurations, which may increase its vulnerability. Moreover, our findings support the crucial role played by the local activation level in maintaining the stability of the neurophysiological organization. Classification performance exhibited accuracy values of 83.91%, 73.68%, and 72.65% for MEG, EEG1, and EEG2 databases, respectively. Conclusion: This study introduces a novel, valuable methodology able to integrate parameters characterize different properties of the brain activity and to explore the intricate organization of the neurophysiological organization at different levels. It was noted that AD increases susceptibility to changes in functional neural organization, suggesting a greater ease in the development of severe impairments. Therefore, ANs could facilitate a deeper comprehension of the complex interactions in brain function from a global standpoint.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherElsevieres
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject.classificationDementia due to Alzheimer’s diseasees
dc.subject.classificationMagnetoencephalographyes
dc.subject.classificationElectroencephalographyes
dc.subject.classificationNeurophysiological organizationes
dc.subject.classificationAssociation networkes
dc.subject.classificationNetwork analysises
dc.titleExploring the disruptions of the neurophysiological organization in Alzheimer’s disease: an integrative approaches
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2024 The Author(s)es
dc.identifier.doi10.1016/j.cmpb.2024.108197es
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0169260724001937es
dc.identifier.publicationfirstpage108197es
dc.identifier.publicationtitleComputer Methods and Programs in Biomedicinees
dc.identifier.publicationvolume250es
dc.peerreviewedSIes
dc.description.projectMinisterio de Ciencia e Innovación/FEDER (PID2022-138286NB-I00)es
dc.description.projectJunta de Castilla y León-Consejería de Educación (FPI)es
dc.description.projectUniversidad de Valladolid (FPI-UVa)es
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco32 Ciencias Médicas


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem