dc.contributor.author | Torre Ordás, Jorge | |
dc.contributor.author | Bernardo García, Victoria | |
dc.contributor.author | Pinto Sanz, Javier | |
dc.contributor.author | Rodríguez Pérez, Miguel Ángel | |
dc.date.accessioned | 2025-01-08T09:19:38Z | |
dc.date.available | 2025-01-08T09:19:38Z | |
dc.date.issued | 2024 | |
dc.identifier.citation | Polymer Testing, julio 2024, vol. 136, 108487 | es |
dc.identifier.issn | 0142-9418 | es |
dc.identifier.uri | https://uvadoc.uva.es/handle/10324/73120 | |
dc.description | Producción Científica | es |
dc.description.abstract | In order to understand the performance of polymeric porous materials as heat insulators, the contribution of the
radiative transfer mechanism in porous materials with high ratios of anisotropy is studied. Porous materials
based on extruded polystyrene (XPS) with relative density in the range of 0.03 − 0.05 and with a range of
anisotropy ratios of 0.6 − 1.4 have been selected for this research. The study begins with a characterization of the
selected materials in terms of porous structure and thermal conductivity as a function of temperature. Then, the
radiative contribution for each of the three main directions of the materials is obtained by three independent
methodologies: Fourier Transform Infrared (FTIR) spectroscopy, derivation from the total conductivity using
theoretical models, and theoretical calculation from the model proposed by Glicksman. The results show similar
trends for all methods and confirm clear differences between each direction, showing a significant reduction of
the radiative contribution and, thus, the total conductivity, if the material is oriented geometrically towards the
direction in which the pore size is the smallest. Indeed, reductions of 17 − 20% in the total conductivity can be achieved at temperatures ranging from 10 − 40 ◦C if the material is reoriented as stated. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.publisher | Elsevier | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject.classification | Thermal insulation | es |
dc.subject.classification | Extrusion | es |
dc.subject.classification | Polymers | es |
dc.subject.classification | Anisotropy | es |
dc.subject.classification | Infrared radiation | es |
dc.title | Contribution of the radiative transfer mechanism to the total thermal conductivity of anisotropic porous materials | es |
dc.type | info:eu-repo/semantics/article | es |
dc.rights.holder | © 2024 The Authors | es |
dc.identifier.doi | 10.1016/j.polymertesting.2024.108487 | es |
dc.relation.publisherversion | https://www.sciencedirect.com/science/article/pii/S0142941824001648 | es |
dc.identifier.publicationfirstpage | 108487 | es |
dc.identifier.publicationtitle | Polymer Testing | es |
dc.identifier.publicationvolume | 136 | es |
dc.peerreviewed | SI | es |
dc.description.project | Ministerio de Ciencia, Innovación y Universidades (PID2021-127108OB-I00, TED2021-130965B–I00 and PDC2022-133391-I00) | es |
dc.description.project | Junta de Castilla y León/FEDER (CLU-2019-04, C17. I1) | es |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es |