Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/73291
Título
Sex estimation using long bones in the largest burial site of the Copper Age: Linear discriminant analysis and random forest
Autor
Año del Documento
2024
Editorial
Elsevier
Descripción
Producción Científica
Documento Fuente
Journal of Archaeological Science: Reports, octubre 2024, vol. 58, 104730
Resumen
Sex estimation of the individuals in a sample is fundamental for any bioarchaeological study to define a particular demographic assemblage or to classify isolated remains. Long bones are an excellent alternative for sex estimation when the most dimorphic anatomical parts are not preserved or are highly altered. Here we propose a set of discriminant functions and classification models to estimate the sex of prehistoric individuals using linear discriminant analysis and machine learning approaches. Different osteometric variables were taken from the humeri, ulnae, radii, femurs and tibias of a sample of 109 articulated skeletons buried in the collective tomb of Camino del Molino (Region of Murcia, SE-Spain), dated to the 3rd millennium BC. Sex was estimated based on standard anthropological methods and ancient DNA analysis of a control sample. Fifty-two discriminant functions with prediction thresholds higher than 0.8 on the ROC curve were obtained using independent (22) and combined variables (30). The best LDA models for sex prediction were those based on proximal epiphyseal widths or their combination with other variables, reaching values close to 0.98 on the ROC curve. The random forest-based model obtained an accuracy of 0.94 and confirmed the importance of epiphyseal widths in sex classification. This analysis is more comprehensive than univariate LDA, as it allows for ranking the importance of bones in sex discrimination and considers correlations between long bones rather than treating them as independent observations. In contrast, applying LDA to each bone makes it easier to predict the sex of other coeval collections that do not have such a complete sample. This work aims to overcome the scarcity of methods that can be applied to sex estimation of the large volume of isolated remains from Camino del Molino and for other Mediterranean skeletal series from the Late Prehistory with high biological affinity and that share similar environmental conditions.
Materias Unesco
5504.05 Prehistoria
5505.01 Arqueología
2402.03 Antropometría y Antropología Forense
Palabras Clave
Late Prehistory
Iberian Peninsula
Sexual dimorphism
Anthropometry
Discriminant functions
Machine Learning
ISSN
2352-409X
Revisión por pares
SI
Patrocinador
Swedish Phytogeographical Society (Bertil Lundman grant for Anthropological Studies)
Ministerio de Ciencia e Innovación (RYC2018-025223-I, JDC2022-049666-I)
Junta de Castilla y León-Consejería de Educación (PR-2018)
Ministerio de Ciencia e Innovación (RYC2018-025223-I, JDC2022-049666-I)
Junta de Castilla y León-Consejería de Educación (PR-2018)
Version del Editor
Propietario de los Derechos
© 2024 The Authors
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Ficheros en el ítem
Tamaño:
7.096Mb
Formato:
Adobe PDF
La licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional