Mostrar el registro sencillo del ítem

dc.contributor.authorLevy, Jeremy
dc.contributor.authorÁlvarez, Daniel
dc.contributor.authorRosenberg, Aviv A.
dc.contributor.authorAlexandrovich, Alexandra
dc.contributor.authordel Campo, Félix
dc.contributor.authorBehar, Joachim A.
dc.date.accessioned2025-01-20T16:58:44Z
dc.date.available2025-01-20T16:58:44Z
dc.date.issued2021
dc.identifier.citationnpj Digital Medicine, 2021, vol. 4, p.1es
dc.identifier.issn2398-6352es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/74128
dc.descriptionProducción Científicaes
dc.description.abstractPulse oximetry is routinely used to non-invasively monitor oxygen saturation levels. A low oxygen level in the blood means low oxygen in the tissues, which can ultimately lead to organ failure. Yet, contrary to heart rate variability measures, a field which has seen the development of stable standards and advanced toolboxes and software, no such standards and open tools exist for continuous oxygen saturation time series variability analysis. The primary objective of this research was to identify, implement and validate key digital oximetry biomarkers (OBMs) for the purpose of creating a standard and associated reference toolbox for continuous oximetry time series analysis. We review the sleep medicine literature to identify clinically relevant OBMs. We implement these biomarkers and demonstrate their clinical value within the context of obstructive sleep apnea (OSA) diagnosis on a total of n = 3806 individual polysomnography recordings totaling 26,686 h of continuous data. A total of 44 digital oximetry biomarkers were implemented. Reference ranges for each biomarker are provided for individuals with mild, moderate, and severe OSA and for non-OSA recordings. Linear regression analysis between biomarkers and the apnea hypopnea index (AHI) showed a high correlation, which reached R2 = 0.82. The resulting python OBM toolbox, denoted “pobm”, was contributed to the open software PhysioZoo (physiozoo.org). Studying the variability of the continuous oxygen saturation time series using pbom may provide information on the underlying physiological control systems and enhance our understanding of the manifestations and etiology of diseases, with emphasis on respiratory diseases.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherSPRINGER NATUREes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleDigital oximetry biomarkers for assessing respiratory function: standards of measurement, physiological interpretation, and clinical usees
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holderLevy J et al.es
dc.identifier.doi10.1038/s41746-020-00373-5es
dc.relation.publisherversionhttps://www.nature.com/articles/s41746-020-00373-5es
dc.identifier.publicationissue1es
dc.identifier.publicationtitlenpj Digital Medicinees
dc.identifier.publicationvolume4es
dc.peerreviewedSIes
dc.description.projectThis work has been partially supported by “CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)” through “Instituto de Salud Carlos III” co-funded with FEDER funds.es
dc.identifier.essn2398-6352es
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem