Show simple item record

dc.contributor.authorAn, D. T. V.
dc.contributor.authorGutiérrez Vaquero, César 
dc.date.accessioned2025-01-21T08:13:19Z
dc.date.available2025-01-21T08:13:19Z
dc.date.issued2021
dc.identifier.citationSet-Valued and Variational Analysis, 2021, vol. 29, n. 4 p. 893-914es
dc.identifier.issn1877-0533es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/74146
dc.descriptionProducción Científicaes
dc.description.abstractThis paper focuses on formulas for the ε-subdifferential of the optimal value function of scalar and vector convex optimization problems. These formulas can be applied when the set of solutions of the problem is empty. In the scalar case, both unconstrained problems and problems with an inclusion constraint are considered. For the last ones, limiting results are derived, in such a way that no qualification conditions are required. The main mathematical tool is a limiting calculus rule for the ε-subdifferential of the sum of convex and lower semicontinuous functions defined on a (non necessarily reflexive) Banach space. In the vector case, unconstrained problems are studied and exact formulas are derived by linear scalarizations. These results are based on a concept of infimal set, the notion of cone proper set and an ε-subdifferential for convex vector functions due to Taa.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherSpringeres
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.classificationDifferential stabilityes
dc.subject.classificationε-subdifferentiales
dc.subject.classificationParametric convex programminges
dc.subject.classificationLimiting calculus rulees
dc.subject.classificationOptimal value functiones
dc.subject.classificationApproximate solutiones
dc.subject.classificationVector optimizationes
dc.subject.classificationInfimal setes
dc.subject.classificationCone proper setes
dc.subject.classificationWeak minimal solutiones
dc.titleDifferential stability properties in convex scalar and vector optimizationes
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holderSpringeres
dc.rights.holder© The Author(s) 2021
dc.identifier.doi10.1007/S11228-021-00601-4es
dc.relation.publisherversionhttps://link.springer.com/article/10.1007/s11228-021-00601-4es
dc.identifier.publicationfirstpage893es
dc.identifier.publicationissue4es
dc.identifier.publicationlastpage914es
dc.identifier.publicationtitleSet-Valued and Variational Analysises
dc.identifier.publicationvolume29es
dc.peerreviewedSIes
dc.description.projectThis research was partially supported by the Mathematics Research Institute of the University of Valladolid (IMUVA), the Simons Foundation Grant Targeted for Institute of Mathematics, Vietnam Academy of Science and Technology and Thai Nguyen University of Sciences (Vietnam) and the Ministerio de Ciencia e Innovación (MCI), Agencia Estatal de Investigación (AEI) (Spain) and Fondo Europeo de Desarrollo Regional (FEDER) under project PID2020-112491GB-I00 (MCI/AEI/FEDER, UE)es
dc.identifier.essn1877-0541es
dc.rightsAtribución 4.0 Internacional
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record