Mostrar el registro sencillo del ítem

dc.contributor.authorRivera García, Diego
dc.contributor.authorGarcía Escudero, Luis Ángel 
dc.contributor.authorMayo Iscar, Agustín 
dc.contributor.authorOrtega, Joaquín
dc.date.accessioned2025-01-25T23:15:14Z
dc.date.available2025-01-25T23:15:14Z
dc.date.issued2019
dc.identifier.citationAdvances in Data Analysis and Classification, 13(1), 201-225.es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/74395
dc.description.abstractMany clustering algorithms when the data are curves or functions have been recently proposed. However, the presence of contamination in the sample of curves can influence the performance of most of them. In this work we propose a robust, model-based clustering method that relies on an approximation to the “density function” for functional data. The robustness follows from the joint application of data-driven trimming, for reducing the effect of contaminated observations, and constraints on the variances, for avoiding spurious clusters in the solution. The algorithm is designed to perform clustering and outlier detection simultaneously by maximizing a trimmed “pseudo” likelihood. The proposed method has been evaluated and compared with other existing methods through a simulation study.Better performance for the proposed methodology is shown when a fraction of contaminating curves is added to a non-contaminated sample. Finally, an application to a real data set that has been previously considered in the literature is given.es
dc.format.mimetypeapplication/pdfes
dc.language.isospaes
dc.publisherSpringeres
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.titleRobust clustering for functional data based on trimming and constraintses
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doi10.1007/s11634-018-0312-7es
dc.relation.publisherversionhttps://link.springer.com/article/10.1007/s11634-018-0312-7es
dc.peerreviewedSIes
dc.description.projectSpanish Ministerio de Economía y Competitividad, grant MTM2017-86061-C2-1-P, and by Consejería de Educación de la Junta de Castilla y León and FEDER, grant VA005P17.es
dc.description.projectConacyt, Mexico Projects 169175 Análisis Estadístico de Olas Marinas, Fase II y 234057 Análisis Espectral, Datos Funcionales y Aplicaciones).es
dc.type.hasVersioninfo:eu-repo/semantics/draftes


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem