Mostrar el registro sencillo del ítem

dc.contributor.authorNúñez Carrero, Karina C.
dc.contributor.authorHerrero, Manuel
dc.contributor.authorLizalde-Arroyo, Félix
dc.contributor.authorMerino, Juan Carlos
dc.contributor.authorRodríguez-Pérez, Miguel Ángel
dc.contributor.authorAlonso Pastor, Luis Eduardo 
dc.contributor.authorOliveira Salmazo, Leandra
dc.contributor.authorPastor Barajas, José María
dc.date.accessioned2025-01-27T17:26:28Z
dc.date.available2025-01-27T17:26:28Z
dc.date.issued2023-07-07
dc.identifier.citationProgress in Additive Manufacturing, July 2023, vol. 9, p. 857–874es
dc.identifier.issn2363-9512es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/74454
dc.descriptionProducción Científicaes
dc.description.abstractAs additive manufacturing (AM) becomes more widespread in ever more demanding applications, the performance demands on printed parts are increasing. Efforts are directed towards improving mechanical performance in all manufacturing directions, including requirements such as sustainability, economic viability, and weight savings. This work focuses on the systematic study of printed parts by manufacturing fused filaments fabrication (FFF) of a bio-based polyamide (PA11) reinforced with different types and amounts of fibres: short glass fibre (GF) and a needle-shaped nanofibre: sepiolite (SEP). The aim was to establish which of these two had the best balance between improving mechanical properties and forming intra- or interrater defects. The surprising results revealed that the different morphologies of these fillers induce two opposite stiffening mechanisms and defect microstructure. In the case of SEP, a change in the crystalline polymorph, a higher crystallization rate and the elevated dispersion of high and constant surface area fibres increase the stiffness at a lower effective load. Additionally, nanocomposites possess lower percentage porosity with more isotropic and smaller average inter-raster pores compared to GF composites. The latter are stiffened only by the immobilisation effect of the confined polymer chains in a system with a high dispersion of fibre sizes with heterogenous and intrarasterised defects. By contrast, these morphologies provide the GF composites with a more effective energy dissipation mechanism in impact tests and higher thermal stability.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherSpringeres
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.subjectImpresión 3Des
dc.subjectBiopolímeroses
dc.subject.classificationBiopolyamidees
dc.subject.classificationBiopoliamidaes
dc.subject.classificationFused filament fabrication (FFF)es
dc.subject.classificationFabricación por filamento fundido (FFF)es
dc.subject.classificationNanocompositeses
dc.subject.classificationNanocompuestoses
dc.titleBiopolyamide composites for fused filament manufacturing: impact of fibre type on the microstructure and mechanical performance of printed partses
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2023 The Authorses
dc.identifier.doi10.1007/s40964-023-00486-9es
dc.relation.publisherversionhttps://link.springer.com/article/10.1007/s40964-023-00486-9es
dc.identifier.publicationfirstpage857es
dc.identifier.publicationlastpage874es
dc.identifier.publicationtitleBiopolyamide composites for fused filament manufacturing: impact of fibre type on the microstructure and mechanical performance of printed partses
dc.identifier.publicationvolume9es
dc.peerreviewedSIes
dc.description.projectRecovery and Resilience Mechanism Funds, Next Generation EU Fundses
dc.description.projectCommunity of Castilla y León Funds. Complementary Research and Development Plans with the Autonomous Communities in R&D&I actions, of the Component 17. Investment 1.es
dc.identifier.essn2363-9520es
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco3312.10 Plásticoses
dc.subject.unesco2211.02 Materiales Compuestoses


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem