Mostrar el registro sencillo del ítem
dc.contributor.author | Cámara, Jesús | |
dc.contributor.author | Cuenca, Javier | |
dc.contributor.author | Boratto, Murilo | |
dc.date.accessioned | 2025-01-27T20:03:13Z | |
dc.date.available | 2025-01-27T20:03:13Z | |
dc.date.issued | 2023 | |
dc.identifier.citation | Lecture Notes in Computer Science, 2023, Volume 14073, Pages 668-682 | es |
dc.identifier.issn | 0302-9743 | es |
dc.identifier.uri | https://uvadoc.uva.es/handle/10324/74471 | |
dc.description | Producción Científica | es |
dc.description.abstract | This work presents several self-optimization strategies to improve the performance of task-based linear algebra software on heterogeneous systems. The study focuses on Chameleon, a task-based dense linear algebra software whose routines are computed using a tile-based algorithmic scheme and executed in the available computing resources of the system using a scheduler which dynamically handles data dependencies among the basic computational kernels of each linear algebra routine. The proposed strategies are applied to select the best values for the parameters that affect the performance of the routines, such as the tile size or the scheduling policy, among others. Also, parallel optimized implementations provided by existing linear algebra libraries, such as Intel MKL (on multicore CPU) or cuBLAS (on GPU) are used to execute each of the computational kernels of the routines. Results obtained on a heterogeneous system composed of several multicore and multiGPU are satisfactory, with performances close to the experimental optimum. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.publisher | Springer | es |
dc.rights.accessRights | info:eu-repo/semantics/restrictedAccess | es |
dc.subject | Computación Heterogénea | es |
dc.subject | Auto-Tuning | es |
dc.subject.classification | Heterogeneous Computing | es |
dc.subject.classification | Task-based Scheduling | es |
dc.subject.classification | Linear Algebra | es |
dc.subject.classification | Autotuning | es |
dc.title | Improving the Performance of Task-Based Linear Algebra Software with Autotuning Techniques on Heterogeneous Architectures | es |
dc.type | info:eu-repo/semantics/article | es |
dc.rights.holder | © Springer Nature Switzerland AG | es |
dc.identifier.doi | 10.1007/978-3-031-35995-8_47 | es |
dc.relation.publisherversion | https://link.springer.com/chapter/10.1007/978-3-031-35995-8_47 | es |
dc.identifier.publicationfirstpage | 668 | es |
dc.identifier.publicationlastpage | 682 | es |
dc.identifier.publicationtitle | Lecture Notes in Computer Science | es |
dc.identifier.publicationvolume | 14073 | es |
dc.peerreviewed | SI | es |
dc.description.project | Este trabajo forma parte del proyecto de investigación RTI2018-098156-B-C53 financiado por la Agencia Estatal de Investigación (AEI) y el Ministerio de Ciencia, Innovación y Universidades (MCIU) | es |
dc.identifier.essn | 1611-3349 | es |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es |
dc.subject.unesco | 1203 Ciencia de Los Ordenadores | es |
dc.subject.unesco | 3304 Tecnología de Los Ordenadores | es |