Mostrar el registro sencillo del ítem

dc.contributor.authorFernández-Díaz, Cristina M.
dc.contributor.authorMerino, Beatriz
dc.contributor.authorLópez-Acosta, José F.
dc.contributor.authorCidad, Pilar
dc.contributor.authorde la Fuente, Miguel A.
dc.contributor.authorLobatón, Carmen D.
dc.contributor.authorMoreno, Alfredo
dc.contributor.authorLeissring, Malcolm A.
dc.contributor.authorPerdomo, Germán
dc.contributor.authorCózar-Castellano, Irene
dc.date.accessioned2025-01-29T09:39:29Z
dc.date.available2025-01-29T09:39:29Z
dc.date.issued2019
dc.identifier.citationAm J Physiol Endocrinol Metab. 2019 Nov 1;317(5):E805-E819.es
dc.identifier.issn0193-1849es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/74563
dc.description.abstractInhibition of insulin-degrading enzyme (IDE) has been proposed as a possible therapeutic target for type 2 diabetes treatment. However, many aspects of IDE's role in glucose homeostasis need to be clarified. In light of this, new preclinical models are required to elucidate the specific role of this protease in the main tissues related to insulin handling. To address this, here we generated a novel line of mice with selective deletion of the Ide gene within pancreatic beta-cells, B-IDE-KO mice, which have been characterized in terms of multiple metabolic end points, including blood glucose, plasma C-peptide, and intraperitoneal glucose tolerance tests. In addition, glucose-stimulated insulin secretion was quantified in isolated pancreatic islets and beta-cell differentiation markers and insulin secretion machinery were characterized by RT-PCR. Additionally, IDE was genetically and pharmacologically inhibited in INS-1E cells and rodent and human islets, and insulin secretion was assessed. Our results show that, in vivo, life-long deletion of IDE from beta-cells results in increased plasma C-peptide levels. Corroborating these findings, isolated islets from B-IDE-KO mice showed constitutive insulin secretion, a hallmark of beta-cell functional immaturity. Unexpectedly, we found 60% increase in Glut1 (a high-affinity/low-Km glucose transporter), suggesting increased glucose transport into the beta-cell at low glucose levels, which may be related to constitutive insulin secretion. In parallel, IDE inhibition in INS-1E and islet cells resulted in impaired insulin secretion after glucose challenge. We conclude that IDE is required for glucose-stimulated insulin secretion. When IDE is inhibited, insulin secretion machinery is perturbed, causing either inhibition of insulin release at high glucose concentrations or constitutive secretion.es
dc.format.mimetypeapplication/pdfes
dc.language.isospaes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.titlePancreatic β-cell-specific deletion of insulin-degrading enzyme leads to dysregulated insulin secretion and β-cell functional immaturityes
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doi10.1152/ajpendo.00040.2019es
dc.identifier.publicationfirstpageE805es
dc.identifier.publicationissue5es
dc.identifier.publicationlastpageE819es
dc.identifier.publicationtitleAmerican Journal of Physiology-Endocrinology and Metabolismes
dc.identifier.publicationvolume317es
dc.peerreviewedSIes
dc.identifier.essn1522-1555es
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem