Mostrar el registro sencillo del ítem

dc.contributor.authorGonzález Del Rio, Beatriz 
dc.contributor.authorGonzález Tesedo, Luis Enrique 
dc.date.accessioned2025-01-30T10:40:01Z
dc.date.available2025-01-30T10:40:01Z
dc.date.issued2024
dc.identifier.citationJournal of Chemical Theory and Computation, 2024, 20, 3285-3297es
dc.identifier.issn1549-9618es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/74644
dc.descriptionProducción Científicaes
dc.description.abstractIn this machine learning (ML) study, we delved into the unique properties of liquid lanthanum and the Li4Pb alloy, revealing some unexpected features and also firmly establishing some of the debated characteristics. Leveraging interatomic potentials derived from ab initio calculations, our investigation achieved a level of precision comparable to first-principles methods while at the same time entering the hydrodynamic regime. We compared the structure factors and pair distribution functions to experimental data and unearthed distinctive collective excitations with intriguing features. Liquid lanthanum unveiled two transverse collective excitation branches, each closely tied to specific peaks in the velocity autocorrelation function spectrum. Furthermore, the analysis of the generalized specific heat ratio in the hydrodynamic regime investigated with the ML molecular dynamics simulations uncovered a peculiar behavior, impossible to discern with only ab initio simulations. Liquid Li4Pb, on the other hand, challenged existing claims by showcasing a rich array of branches in its longitudinal dispersion relation, including a high-frequency LiLi mode with a nonhydrodynamic optical character that maintains a finite value as q → 0. Additionally, we conducted an in-depth analysis of various transport coefficients, expanding our understanding of these liquid metallic systems. In summary, our ML approach yielded precise results, offering new and captivating insights into the structural and dynamic aspects of these materials.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherAmerican Chemical Societyes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.titleExploring Challenging Properties of Liquid Metallic Systems through Machine Learning: Liquid La and Li4Pb Systemses
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doi10.1021/acs.jctc.4c00049es
dc.relation.publisherversionhttps://pubs.acs.org/doi/10.1021/acs.jctc.4c00049es
dc.identifier.publicationfirstpage3285es
dc.identifier.publicationissue8es
dc.identifier.publicationlastpage3297es
dc.identifier.publicationtitleJournal of Chemical Theory and Computationes
dc.identifier.publicationvolume20es
dc.peerreviewedSIes
dc.description.projectMEC-FEDER Grant PGC2018-093745-B-I00es
dc.description.projectMinisterio de Universidades + NextGeneration-EU + Universidad de Valladolid, Program Maria Zambranoes
dc.identifier.essn1549-9626es
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem