Show simple item record

dc.contributor.authorBrox López, José Ramón
dc.contributor.authorGarcía, Esther
dc.contributor.authorGómez Lozano, Miguel
dc.contributor.authorAlcázar, Rubén Muñoz
dc.contributor.authorVera de Salas, Guillermo
dc.date.accessioned2025-02-03T05:20:14Z
dc.date.available2025-02-03T05:20:14Z
dc.date.issued2021
dc.identifier.citationBulletin of the Malaysian Mathematical Sciences Society, February 2021, vol. 44, n. 4, p.2577-2602.es
dc.identifier.issn0126-6705es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/74802
dc.descriptionProducción Científicaes
dc.description.abstractIn this paper, we study ad-nilpotent elements in Lie algebras arising from semiprime associative rings R free of 2-torsion. With the idea of keeping under control the torsion of R, we introduce a more restrictive notion of ad-nilpotent element, pure ad-nilpotent element, which is a only technical condition since every ad-nilpotent element can be expressed as an orthogonal sum of pure ad-nilpotent elements of decreasing indices. This allows us to be more precise when setting the torsion inside the ring R in order to describe its ad-nilpotent elements. If R is a semiprime ring and is a pure ad-nilpotent element of R of index n with R free of t and (n,t)-torsion for t=(n+1)/2, then n is odd and there exists L in the extended centroid such that a-L is nilpotent of index t. If R is a semiprime ring with involution * and a is a pure ad-nilpotent element of Skew(R,*) free of t and (n,t)-torsion for t=(n+1)/2, then either a is an ad-nilpotent element of R of the same index n (this may occur if n=1,3 mod 4) or R is a nilpotent element of R of index t+1, and R satisfies a nontrivial GPI (this may occur if n=0,3 mod 4). The case is n=2 mod 4 not possible.es
dc.format.mimetypeapplication/pdfes
dc.language.isospaes
dc.publisherSpringer Naturees
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.subject.classificationanillos semiprimos, anillos con involución, álgebras de Liees
dc.titleA description of ad-nilpotent elements in semiprime rings with involutiones
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doi10.1007/s40840-020-01064-wes
dc.relation.publisherversionhttps://link.springer.com/article/10.1007/s40840-020-01064-wes
dc.identifier.publicationfirstpage2577es
dc.identifier.publicationissue4es
dc.identifier.publicationlastpage2602es
dc.identifier.publicationtitleBulletin of the Malaysian Mathematical Sciences Societyes
dc.identifier.publicationvolume44es
dc.peerreviewedSIes
dc.description.projectThis work was partially supported by the Centre for Mathematics of the University of Coimbra—UIDB/00324/2020, funded by the Portuguese Government through FCT/MCTES. The first author was supported by the Portuguese Government through the FCT Grant SFRH/BPD/118665/2016. The four last authors were partially supported by MTM2017-84194-P (AEI/FEDER, UE), and by the Junta de Andalucía FQM264.es
dc.identifier.essn2180-4206es
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record