dc.contributor.author | Brox López, José Ramón | |
dc.contributor.author | García, Esther | |
dc.contributor.author | Gómez Lozano, Miguel | |
dc.contributor.author | Alcázar, Rubén Muñoz | |
dc.contributor.author | Vera de Salas, Guillermo | |
dc.date.accessioned | 2025-02-03T05:20:14Z | |
dc.date.available | 2025-02-03T05:20:14Z | |
dc.date.issued | 2021 | |
dc.identifier.citation | Bulletin of the Malaysian Mathematical Sciences Society, February 2021, vol. 44, n. 4, p.2577-2602. | es |
dc.identifier.issn | 0126-6705 | es |
dc.identifier.uri | https://uvadoc.uva.es/handle/10324/74802 | |
dc.description | Producción Científica | es |
dc.description.abstract | In this paper, we study ad-nilpotent elements in Lie algebras arising from semiprime associative rings R free of 2-torsion. With the idea of keeping under control the torsion of R, we introduce a more restrictive notion of ad-nilpotent element, pure ad-nilpotent element, which is a only technical condition since every ad-nilpotent element can be expressed as an orthogonal sum of pure ad-nilpotent elements of decreasing indices. This allows us to be more precise when setting the torsion inside the ring R in order to describe its ad-nilpotent elements. If R is a semiprime ring and is a pure ad-nilpotent element of R of index n with R free of t and (n,t)-torsion for t=(n+1)/2, then n is odd and there exists L in the extended centroid such that a-L is nilpotent of index t. If R is a semiprime ring with involution * and a is a pure ad-nilpotent element of Skew(R,*) free of t and (n,t)-torsion for t=(n+1)/2, then either a is an ad-nilpotent element of R of the same index n (this may occur if n=1,3 mod 4) or R is a nilpotent element of R of index t+1, and R satisfies a nontrivial GPI (this may occur if n=0,3 mod 4). The case is n=2 mod 4 not possible. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | spa | es |
dc.publisher | Springer Nature | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.subject.classification | anillos semiprimos, anillos con involución, álgebras de Lie | es |
dc.title | A description of ad-nilpotent elements in semiprime rings with involution | es |
dc.type | info:eu-repo/semantics/article | es |
dc.identifier.doi | 10.1007/s40840-020-01064-w | es |
dc.relation.publisherversion | https://link.springer.com/article/10.1007/s40840-020-01064-w | es |
dc.identifier.publicationfirstpage | 2577 | es |
dc.identifier.publicationissue | 4 | es |
dc.identifier.publicationlastpage | 2602 | es |
dc.identifier.publicationtitle | Bulletin of the Malaysian Mathematical Sciences Society | es |
dc.identifier.publicationvolume | 44 | es |
dc.peerreviewed | SI | es |
dc.description.project | This work was partially supported by the Centre for Mathematics of the University of Coimbra—UIDB/00324/2020, funded by the Portuguese Government through FCT/MCTES. The first author was supported by the Portuguese Government through the FCT Grant SFRH/BPD/118665/2016. The four last authors were partially supported by MTM2017-84194-P (AEI/FEDER, UE), and by the Junta de Andalucía FQM264. | es |
dc.identifier.essn | 2180-4206 | es |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es |