Mostrar el registro sencillo del ítem

dc.contributor.authorAlberto, José
dc.contributor.authorBrox, Jose
dc.date.accessioned2025-02-03T05:27:54Z
dc.date.available2025-02-03T05:27:54Z
dc.date.issued2020
dc.identifier.citationApplied Mathematics and Computation, Julio 2020, vol. 377, artículo n. 125185, 14 pp.es
dc.identifier.issn0096-3003es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/74803
dc.descriptionProducción Científicaes
dc.description.abstractWe find closed-form algebraic formulas for the elements of the inverses of tridiagonal 2- and 3-Toeplitz matrices which are symmetric and have constant upper and lower diagonals. These matrices appear, respectively, as the impedance matrices of resonator arrays in which a receiver is placed over every 2 or 3 resonators. Consequently, our formulas allow to compute the currents of a wireless power transfer system in closed form, allowing for a simple, exact and symbolic analysis thereof. Small numbers are chosen for illustrative purposes, but the elementary linear algebra techniques used can be extended to k -Toeplitz matrices of this special form with k arbitrary, hence resonator arrays with a receiver placed over every k resonators can be analysed in the same way.es
dc.format.mimetypeapplication/pdfes
dc.language.isospaes
dc.publisherElsevieres
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.subjectresonadores magnéticos, transferencia de energía sin cables, matrices tridiagonales, determinante, inversaes
dc.titleInverses of k-Toeplitz matrices with applications to resonator arrays with multiple receiverses
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doi10.1016/j.amc.2020.125185es
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/abs/pii/S0096300320301545es
dc.identifier.publicationfirstpage1es
dc.identifier.publicationlastpage14es
dc.identifier.publicationtitleApplied Mathematics and Computationes
dc.identifier.publicationvolume377es
dc.peerreviewedSIes
dc.description.projectThis work was partially supported by the Centre for Mathematics of the University of Coimbra – UID/MAT/00324/2019, funded by the Portuguese Government through FCT/MEC and co-funded by the European Regional Development Fund through the Partnership Agreement PT2020 . The second author was supported by the Portuguese Government through the Fundação para a Ciência e a Tecnologia, from Portugal grant SFRH/BPD/118665/2016.es
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem