Mostrar el registro sencillo del ítem

dc.contributor.authorReñones Domínguez, Aníbal
dc.contributor.authorGalende Hernández, Marta 
dc.date.accessioned2025-02-13T11:17:46Z
dc.date.available2025-02-13T11:17:46Z
dc.date.issued2020
dc.identifier.citationADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal, 9(4), 83-94es
dc.identifier.issn2255-2863es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/74895
dc.descriptionProducción Científicaes
dc.description.abstractPractical research in AI often lacks of available and reliable datasets so the practitioners can try different algorithms. The field of predictive maintenance is particularly challenging in this aspect as many researchers don't have access to full-size industrial equipment or there is not available datasets representing a rich information content in different evolutions of faults. In this paper, it is presented a dataset with evolution of typical faults (commutator, winding and brush wear) in inexpensive DC motors under extensive monitoring (vibration, temperature, voltage, current and noise). These motors exhibit a particularly short useful life when operating out of nominal conditions (from 30 minutes to 6 hours) which make them very interesting to test different signal processing algorithms and introduce students and researchers into signal processing, fault detection and predictive maintenance. The paper explains in detail the experimentation and the structure of the real, un-processed, dataset published in the AI4EU platform with the aim of complying with the FAIR principle so the dataset is Findable, Accessible, Interoperable and Reusable.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherEdiciones Universidad de Salamancaes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject.classificationOpen dataes
dc.subject.classificationArtificial intelligencees
dc.subject.classificationFault diagnosises
dc.subject.classificationPredictive maintenancees
dc.subject.classificationDC motores
dc.titleF.A.I.R. open dataset of brushed DC motor faults for testing of AI algorithmses
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2020 The Authorses
dc.identifier.doi10.14201/ADCAIJ2020948394es
dc.relation.publisherversionhttps://revistas.usal.es/cinco/index.php/2255-2863/article/view/ADCAIJ2020948394es
dc.identifier.publicationfirstpage83es
dc.identifier.publicationissue4es
dc.identifier.publicationlastpage94es
dc.identifier.publicationtitleADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journales
dc.identifier.publicationvolume9es
dc.peerreviewedSIes
dc.description.projectEuropean Regional Development Fund (ERDF) of the European Union and the “Junta de Castilla y León” regional government (ref: CCTT1/17/VA/0003)es
dc.identifier.essn2255-2863es
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem