Mostrar el registro sencillo del ítem

dc.contributor.authorChinchilla Dueñas, Maira Ivette
dc.contributor.authorMartín Martínez, Ángel 
dc.contributor.authorMcGregor, James
dc.contributor.authorMato Chaín, Fidel Antonio 
dc.contributor.authorBermejo Roda, Maria Dolores 
dc.date.accessioned2025-02-17T10:49:30Z
dc.date.available2025-02-17T10:49:30Z
dc.date.issued2025
dc.identifier.citationRSC Sustainability, 2025, vol. 3, p. 822-835es
dc.identifier.issn2753-8125es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/75060
dc.descriptionProducción Científicaes
dc.description.abstractCO2 capture and utilization technologies can make an important contribution to the decarbonization of industry. However, capture processes entail significant economic and energy costs, mainly associated with the purification, compression and transport of CO2. These costs would be reduced if captured CO2 could be transformed in situ into useful products, avoiding purification, compression and transport costs. This work presents a hydrothermal process in which CO2 absorbed in aqueous solutions as bicarbonate is reduced with biomass waste to give formic acid as a joint product of the biomass and CO2 transformation, and acetic and lactic acids as byproducts from the decomposition of the biomass. Several biomass materials are applied as reductants: softwood, sugarcane bagasse, sugar beet, cork, pine needles, vermicompost and pure cellulose as reference material. Moreover, different catalysts are tested to improve conversion yield: Pd(5%)/C and Pd(10%)/C, Ru(5%)/C and activated carbon. The best results (18% formic acid yield) are obtained using pure cellulose as biomass and Pd(5%)/C catalyst. The next best results are obtained with the biomasses with the highest cellulose content, such as wood (11%) and sugarcane bagasse (9%). Experiments performed with labelled H13CO3− as carbon source at 300 °C using the Pd(5%)/C catalyst demonstrate that over 70% of the produced formic acid is formed from the inorganic bicarbonate carbon source. These high yields of conversion using renewable biomass as reductant can contribute to improve the technical and economic feasibility of CO2 capture technology.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherRoyal Society of Chemistryes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc/3.0/*
dc.titleReduction of CO2 captured in basic solutions with biomass as reducing agent and metallic catalystses
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2025 The Author(s)es
dc.identifier.doi10.1039/D4SU00440Jes
dc.relation.publisherversionhttps://pubs.rsc.org/en/content/articlelanding/2025/su/d4su00440jes
dc.identifier.publicationfirstpage822es
dc.identifier.publicationissue2es
dc.identifier.publicationlastpage835es
dc.identifier.publicationtitleRSC Sustainabilityes
dc.identifier.publicationvolume3es
dc.peerreviewedSIes
dc.description.projectMinisterio de Ciencia, Innovación y Universidades (PID2023-150529OB-I00)es
dc.description.projectJunta de Castilla y León/FEDER (CLU-2019-04)es
dc.description.projectUniversidad de Valladolid y Banco Santander (contrato predoctoral)es
dc.description.projectFundación Naturgy (Premio Fundación Naturgy-CSIC a la investigación e innovación tecnológica en el ámbito energético)es
dc.identifier.essn2753-8125es
dc.rightsAttribution-NonCommercial 3.0 Unported*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco3303 Ingeniería y Tecnología Químicases


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem