Mostrar el registro sencillo del ítem
dc.contributor.author | Fuente Aparicio, María Jesús de la | |
dc.contributor.author | Sáinz Palmero, Gregorio Ismael | |
dc.contributor.author | Galende Hernández, Marta | |
dc.date.accessioned | 2025-02-17T12:29:32Z | |
dc.date.available | 2025-02-17T12:29:32Z | |
dc.date.issued | 2023 | |
dc.identifier.citation | IEEE Access, 11, 26611-26623 | es |
dc.identifier.issn | 2169-3536 | es |
dc.identifier.uri | https://uvadoc.uva.es/handle/10324/75068 | |
dc.description | Producción Científica | es |
dc.description.abstract | Decentralized monitoring methods, which divide the process variables into several blocks and perform local monitoring for each sub-block, have been gaining increasing attention in large-scale plant-wide monitoring due to the complexity of their processes. In such methods, the dynamic nature of the process data is a relevant issue which is not usually managed. Here, a new data-driven distributed dynamic monitoring scheme is proposed to deal with this issue, integrating regression to automatically divide the blocks, a multivariate and dynamic statistical analysis (Canonical Variate Analysis, CVA) to perform local monitoring, and Bayesian inference to achieve the decision making. By constructing sub-blocks using regression, it is possible to identify the most commonly associated variables for every block. Three regression methods are proposed: LASSO (Least Absolute Shrinkage and Selection Operator), which forces the coefficients of the less relevant variables towards zero; Elastic-net, a robust method that is a compromise between Ridge and Lasso regression; and, finally, a non-linear regression method based on the Multilayer Perceptron Network (MLP). Then, the CVA model is implemented for each sub-block to consider the dynamic characteristics of the industrial processes and the Bayesian inference provides a global decision for fault detection. The Tennessee Eastman benchmark validates the efficiency and feasibility of the proposed method regarding some state-of-the-art methods. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.publisher | IEEE | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject.classification | Fault detection | es |
dc.subject.classification | Canonical variate analysis | es |
dc.subject.classification | Regression | es |
dc.subject.classification | Decentralized process monitoring | es |
dc.subject.classification | Bayesian inference | es |
dc.title | Dynamic decentralized monitoring for large-scale industrial processes using multiblock canonical variate analysis based regression | es |
dc.type | info:eu-repo/semantics/article | es |
dc.rights.holder | © 2023 The Authors | es |
dc.identifier.doi | 10.1109/ACCESS.2023.3256719 | es |
dc.relation.publisherversion | https://ieeexplore.ieee.org/document/10068246 | es |
dc.identifier.publicationfirstpage | 26611 | es |
dc.identifier.publicationlastpage | 26623 | es |
dc.identifier.publicationtitle | IEEE Access | es |
dc.identifier.publicationvolume | 11 | es |
dc.peerreviewed | SI | es |
dc.description.project | Spanish Government through the Ministerio de Ciencia e Innovación (MICINN) / Agencia Estatal de Investigación (AEI) under Grant PID2019-105434RB-C32/AEI/10.13039/501100011033 | es |
dc.identifier.essn | 2169-3536 | es |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
