Mostrar el registro sencillo del ítem

dc.contributor.authorFuente Aparicio, María Jesús de la 
dc.contributor.authorSáinz Palmero, Gregorio Ismael 
dc.contributor.authorGalende Hernández, Marta 
dc.date.accessioned2025-02-17T12:29:32Z
dc.date.available2025-02-17T12:29:32Z
dc.date.issued2023
dc.identifier.citationIEEE Access, 11, 26611-26623es
dc.identifier.issn2169-3536es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/75068
dc.descriptionProducción Científicaes
dc.description.abstractDecentralized monitoring methods, which divide the process variables into several blocks and perform local monitoring for each sub-block, have been gaining increasing attention in large-scale plant-wide monitoring due to the complexity of their processes. In such methods, the dynamic nature of the process data is a relevant issue which is not usually managed. Here, a new data-driven distributed dynamic monitoring scheme is proposed to deal with this issue, integrating regression to automatically divide the blocks, a multivariate and dynamic statistical analysis (Canonical Variate Analysis, CVA) to perform local monitoring, and Bayesian inference to achieve the decision making. By constructing sub-blocks using regression, it is possible to identify the most commonly associated variables for every block. Three regression methods are proposed: LASSO (Least Absolute Shrinkage and Selection Operator), which forces the coefficients of the less relevant variables towards zero; Elastic-net, a robust method that is a compromise between Ridge and Lasso regression; and, finally, a non-linear regression method based on the Multilayer Perceptron Network (MLP). Then, the CVA model is implemented for each sub-block to consider the dynamic characteristics of the industrial processes and the Bayesian inference provides a global decision for fault detection. The Tennessee Eastman benchmark validates the efficiency and feasibility of the proposed method regarding some state-of-the-art methods.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherIEEEes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject.classificationFault detectiones
dc.subject.classificationCanonical variate analysises
dc.subject.classificationRegressiones
dc.subject.classificationDecentralized process monitoringes
dc.subject.classificationBayesian inferencees
dc.titleDynamic decentralized monitoring for large-scale industrial processes using multiblock canonical variate analysis based regressiones
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2023 The Authorses
dc.identifier.doi10.1109/ACCESS.2023.3256719es
dc.relation.publisherversionhttps://ieeexplore.ieee.org/document/10068246es
dc.identifier.publicationfirstpage26611es
dc.identifier.publicationlastpage26623es
dc.identifier.publicationtitleIEEE Accesses
dc.identifier.publicationvolume11es
dc.peerreviewedSIes
dc.description.projectSpanish Government through the Ministerio de Ciencia e Innovación (MICINN) / Agencia Estatal de Investigación (AEI) under Grant PID2019-105434RB-C32/AEI/10.13039/501100011033es
dc.identifier.essn2169-3536es
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem