Mostrar el registro sencillo del ítem

dc.contributor.authorEs-Sabery, Fatima
dc.contributor.authorEs-Sabery, Ibrahim
dc.contributor.authorQadir, Junaid
dc.contributor.authorSainz de Abajo, Beatriz 
dc.contributor.authorGarcía Zapirain, Begoña
dc.date.accessioned2025-02-21T07:00:56Z
dc.date.available2025-02-21T07:00:56Z
dc.date.issued2024-12-18
dc.identifier.citationJournal of Big Data, Diciembre 2024, vol. 11, n. 1, artículo n. 176, p. 1-55.es
dc.identifier.issn2196-1115es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/75096
dc.descriptionProducción Científicaes
dc.description.abstractIn recent years, research on opinion mining from X (formerly Twitter) has rapidly advanced, focusing on processing tweets to determine user sentiments about events. Many researchers prefer using machine and deep learning techniques for this analysis. This work proposes a novel approach integrating the C4.5 procedure, fuzzy rule patterns, and convolutional neural networks. The approach involves six steps: pre-processing to remove noisy data, vectorizing tweets with word embedding, extracting sentiment and contextual features using convolutional neural networks, fuzzifying outputs with a Gaussian fuzzifier to handle ambiguity, constructing a fuzzy tree and rule base using a fuzzy version of C4.5, and classifying tweets with fuzzy General Reasoning. This method combines the benefits of convolutional neural networks and C4.5 while addressing imprecise data with fuzzy logic. Implemented on a Hadoop framework-based cluster with five computing units, the approach was extensively tested. The results showed that the model performs exceptionally well on the COVID-19_Sentiments dataset, surpassing other classification algorithms with a precision rate of 94.56%, false-negative rate of 5.28%, classification rate of 95.15%, F1-score of 94.63%, kappa statistic of 95.12%, execution time of 11.81 s, false-positive rate of 4.26%, error rate of 4.26%, specificity of 95.74%, recall of 94.72%, stability with a mean deviation standard of 0.09%, convergence starting around the 75th round, and significantly reduced complexity in terms of time and space.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherSpringer Naturees
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/*
dc.subjectSentiment analysises
dc.subjectOpinion mininges
dc.subjectBig dataes
dc.subject.classificationFuzzy version of C4.5 procedurees
dc.subject.classificationConvolutional neural networkes
dc.subject.classificationFuzzy rule patternes
dc.subject.classificationHadoop frameworkes
dc.subject.classificationopinion mininges
dc.subject.classificationSentiment analysises
dc.titleA hybrid Hadoop-based sentiment analysis classifier for tweets associated with COVID-19 utilizing two machine learning algorithms: CNN, and fuzzy C4.5es
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder"© Todos los derechos reservados". Propietario de los derechos: Springer Naturees
dc.identifier.doi10.1186/s40537-024-01014-4es
dc.relation.publisherversionhttps://journalofbigdata.springeropen.com/articles/10.1186/s40537-024-01014-4es
dc.identifier.publicationfirstpage1es
dc.identifier.publicationissue1es
dc.identifier.publicationlastpage55es
dc.identifier.publicationtitleJournal of Big Dataes
dc.identifier.publicationvolume11es
dc.peerreviewedSIes
dc.description.projectEste trabajo ha sido financiado por el grupo de investigación eVida, de la Universidad de Deusto, como parte del proyecto de investigación: Grant IT 905-16.es
dc.identifier.essn2196-1115es
dc.rightsAtribución-NoComercial-CompartirIgual 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem