dc.contributor.author | Rodríguez Vítores, David | |
dc.contributor.author | Matrán Bea, Carlos | |
dc.date.accessioned | 2025-02-26T12:50:58Z | |
dc.date.available | 2025-02-26T12:50:58Z | |
dc.date.issued | 2024 | |
dc.identifier.citation | Statistics and Computing, 2024, vol. 34, n. 4 | es |
dc.identifier.issn | 0960-3174 | es |
dc.identifier.uri | https://uvadoc.uva.es/handle/10324/75137 | |
dc.description | Producción Científica | es |
dc.description.abstract | This work introduces a refinement of the Parsimonious Model for fitting a Gaussian Mixture. The improvement is based on
the consideration of clusters of the involved covariance matrices according to a criterion, such as sharing Principal Directions.
This and other similarity criteria that arise from the spectral decomposition of a matrix are the bases of the Parsimonious
Model. We show that such groupings of covariance matrices can be achieved through simple modifications of the CEM
(Classification Expectation Maximization) algorithm. Our approach leads to propose Gaussian Mixture Models for model-
based clustering and discriminant analysis, in which covariance matrices are clustered according to a parsimonious criterion,
creating intermediate steps between the fourteen widely known parsimonious models. The added versatility not only allows
us to obtain models with fewer parameters for fitting the data, but also provides greater interpretability. We show its usefulness
for model-based clustering and discriminant analysis, providing algorithms to find approximate solutions verifying suitable
size, shape and orientation constraints, and applying them to both simulation and real data examples. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.publisher | Springer | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject.classification | Parsimonious model | es |
dc.subject.classification | Gaussian mixture model | es |
dc.subject.classification | Bayesian information criterion | es |
dc.subject.classification | Model-based classification | es |
dc.subject.classification | EM algorithm | es |
dc.title | Improving model choice in classification: an approach based on clustering of covariance matrices | es |
dc.type | info:eu-repo/semantics/article | es |
dc.rights.holder | © 2024 The Author(s) | es |
dc.identifier.doi | 10.1007/s11222-024-10410-y | es |
dc.relation.publisherversion | https://link.springer.com/article/10.1007/s11222-024-10410-y | es |
dc.identifier.publicationissue | 3 | es |
dc.identifier.publicationtitle | Statistics and Computing | es |
dc.identifier.publicationvolume | 34 | es |
dc.peerreviewed | SI | es |
dc.description.project | Publicación en abierto financiada por el Consorcio de Bibliotecas Universitarias de Castilla y León (BUCLE), con cargo al Programa Operativo 2014ES16RFOP009 FEDER 2014-2020 DE CASTILLA Y LEÓN, Actuación:20007-CL - Apoyo Consorcio BUCLE | es |
dc.description.project | Ministerio de Ciencia e Innovación (MICINN) FEDER (grant PID2021-128314NB-I00) | es |
dc.identifier.essn | 1573-1375 | es |
dc.rights | Atribución 4.0 Internacional | * |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es |
dc.subject.unesco | 12 Matemáticas | es |