Show simple item record

dc.contributor.authorRodríguez Vítores, David
dc.contributor.authorMatrán Bea, Carlos 
dc.date.accessioned2025-02-26T12:50:58Z
dc.date.available2025-02-26T12:50:58Z
dc.date.issued2024
dc.identifier.citationStatistics and Computing, 2024, vol. 34, n. 4es
dc.identifier.issn0960-3174es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/75137
dc.descriptionProducción Científicaes
dc.description.abstractThis work introduces a refinement of the Parsimonious Model for fitting a Gaussian Mixture. The improvement is based on the consideration of clusters of the involved covariance matrices according to a criterion, such as sharing Principal Directions. This and other similarity criteria that arise from the spectral decomposition of a matrix are the bases of the Parsimonious Model. We show that such groupings of covariance matrices can be achieved through simple modifications of the CEM (Classification Expectation Maximization) algorithm. Our approach leads to propose Gaussian Mixture Models for model- based clustering and discriminant analysis, in which covariance matrices are clustered according to a parsimonious criterion, creating intermediate steps between the fourteen widely known parsimonious models. The added versatility not only allows us to obtain models with fewer parameters for fitting the data, but also provides greater interpretability. We show its usefulness for model-based clustering and discriminant analysis, providing algorithms to find approximate solutions verifying suitable size, shape and orientation constraints, and applying them to both simulation and real data examples.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherSpringeres
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subject.classificationParsimonious modeles
dc.subject.classificationGaussian mixture modeles
dc.subject.classificationBayesian information criteriones
dc.subject.classificationModel-based classificationes
dc.subject.classificationEM algorithmes
dc.titleImproving model choice in classification: an approach based on clustering of covariance matriceses
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2024 The Author(s)es
dc.identifier.doi10.1007/s11222-024-10410-yes
dc.relation.publisherversionhttps://link.springer.com/article/10.1007/s11222-024-10410-yes
dc.identifier.publicationissue3es
dc.identifier.publicationtitleStatistics and Computinges
dc.identifier.publicationvolume34es
dc.peerreviewedSIes
dc.description.projectPublicación en abierto financiada por el Consorcio de Bibliotecas Universitarias de Castilla y León (BUCLE), con cargo al Programa Operativo 2014ES16RFOP009 FEDER 2014-2020 DE CASTILLA Y LEÓN, Actuación:20007-CL - Apoyo Consorcio BUCLEes
dc.description.projectMinisterio de Ciencia e Innovación (MICINN) FEDER (grant PID2021-128314NB-I00)es
dc.identifier.essn1573-1375es
dc.rightsAtribución 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco12 Matemáticases


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record