Mostrar registro simples

dc.contributor.authorMerayo Álvarez, Noemí 
dc.contributor.authorAyuso Lanchares, Alba 
dc.contributor.authorGonzález Sanguino, Teresa Clara 
dc.date.accessioned2025-02-26T13:15:56Z
dc.date.available2025-02-26T13:15:56Z
dc.date.issued2025
dc.identifier.citationExpert Systems, 2025, vol. 42, n. 2, e13832es
dc.identifier.issn0266-4720es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/75138
dc.descriptionProducción Científicaes
dc.description.abstractThis research explores the social response to disclosures and conversations about mental health on social media, which is a pioneering and innovative approach. Unlike previous studies, which focused predominantly on psychopathological aspects, this study explores how communities react to conversations about mental health on Instagram, one of the favourite social media platforms among young people, breaking new ground not only in the Spanish context, but also on a global scale, filling a gap in international research. The study created a novel corpus by collecting and labelling comments on Instagram posts related to celebrity mental health disclosures, categorising them by polarity (positive, negative, neutral) and stigma. Additionally, the research implements machine learning algorithms to detect stigma and polarity in mental health disclosures on Instagram. While traditional techniques like Support Vector Machine (SVM) and RF (Random Forest) displayed decent performance with lower computational loads, advanced deep learning and BERT (Bidirectional Encoder Representation from Transformers) algorithms achieved outstanding results. In fact, BERT models achieve around 96% accuracy in polarity and stigma detection, while deep learning models achieve 80% for polarity and 87% for stigma, very high accuracy metrics. This research contributes significantly to understanding the impact of mental health discussions on social media, offering insights that can reduce stigma and raise awareness. Artificial intelligence can be used for more responsible use of social media and effective management of mental health problems in digital environments.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherWileyes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.subject.classificationInstagrames
dc.subject.classificationmachine learninges
dc.subject.classificationmental healthes
dc.subject.classificationnatural language processinges
dc.subject.classificationsentiment analysises
dc.subject.classificationsocial networkses
dc.subject.classificationstigmaes
dc.titleMachine Learning algorithms to address the polarity and stigma of mental health disclosures on Instagrames
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2025 The Author(s)es
dc.identifier.doi10.1111/exsy.13832es
dc.relation.publisherversionhttps://onlinelibrary.wiley.com/doi/full/10.1111/exsy.13832es
dc.identifier.publicationissue2es
dc.identifier.publicationtitleExpert Systemses
dc.identifier.publicationvolume42es
dc.peerreviewedSIes
dc.description.projectUniversidad de Valladolides
dc.identifier.essn1468-0394es
dc.rightsAtribución-NoComercial 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco1203 Ciencia de Los Ordenadoreses
dc.subject.unesco61 Psicologíaes
dc.subject.unesco5910.02 Medios de Comunicación de Masases


Arquivos deste item

Thumbnail

Este item aparece na(s) seguinte(s) coleção(s)

Mostrar registro simples