dc.contributor.author | García Escartín, Juan Carlos | |
dc.date.accessioned | 2025-02-26T14:04:54Z | |
dc.date.available | 2025-02-26T14:04:54Z | |
dc.date.issued | 2024 | |
dc.identifier.citation | Quantum Information Processing, 2024, vol. 23, n. 7 | es |
dc.identifier.uri | https://uvadoc.uva.es/handle/10324/75146 | |
dc.description | Producción Científica | es |
dc.description.abstract | This paper presents a hybrid variational quantum algorithm that finds a random eigen-
vector of a unitary matrix with a known quantum circuit. The algorithm is based on the
SWAP test on trial states generated by a parametrized quantum circuit. The eigenvec-
tor is described by a compact set of classical parameters that can be used to reproduce
the found approximation to the eigenstate on demand. This variational eigenvector
finder can be adapted to solve the generalized eigenvalue problem, to find the eigen-
vectors of normal matrices and to perform quantum principal component analysis on
unknown input mixed states. These algorithms can all be run with low-depth quantum
circuits, suitable for an efficient implementation on noisy intermediate-scale quantum
computers and, with some restrictions, on linear optical systems. In full-scale quan-
tum computers, where there might be optimization problems due to barren plateaus
in larger systems, the proposed algorithms can be used as a primitive to boost known
quantum algorithms. Limitations and potential applications are discussed. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.publisher | Springer | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | Computación cuántica | |
dc.subject | Fotónica | |
dc.subject.classification | Quantum algorithms | es |
dc.subject.classification | Variational algorithms | es |
dc.subject.classification | Hybrid quantum algorithms | es |
dc.subject.classification | Eigenvectors | es |
dc.subject.classification | Quantum principal component analysis | es |
dc.subject.classification | SWAP test | es |
dc.title | Finding eigenvectors with a quantum variational algorithm | es |
dc.type | info:eu-repo/semantics/article | es |
dc.rights.holder | © 2024 The Author(s) | es |
dc.identifier.doi | 10.1007/s11128-024-04461-3 | es |
dc.relation.publisherversion | https://link.springer.com/article/10.1007/s11128-024-04461-3 | es |
dc.identifier.publicationissue | 7 | es |
dc.identifier.publicationtitle | Quantum Information Processing | es |
dc.identifier.publicationvolume | 23 | es |
dc.peerreviewed | SI | es |
dc.description.project | Publicación en abierto financiada por el Consorcio de Bibliotecas Universitarias de Castilla y León (BUCLE), con cargo al Programa Operativo 2014ES16RFOP009 FEDER 2014-2020 DE CASTILLA Y LEÓN, Actuación:20007-CL - Apoyo Consorcio BUCLE | es |
dc.description.project | Ministerio de Ciencia e Innovación (MCIN) - (project PID2020-119418GB-I00) | es |
dc.identifier.essn | 1573-1332 | es |
dc.rights | Atribución 4.0 Internacional | * |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es |
dc.subject.unesco | 2210.23 Teoría Cuántica | es |
dc.subject.unesco | 1203 Ciencia de Los Ordenadores | |
dc.subject.unesco | 2209 Óptica | |