Show simple item record

dc.contributor.authorGarcía Escartín, Juan Carlos 
dc.date.accessioned2025-02-26T14:04:54Z
dc.date.available2025-02-26T14:04:54Z
dc.date.issued2024
dc.identifier.citationQuantum Information Processing, 2024, vol. 23, n. 7es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/75146
dc.descriptionProducción Científicaes
dc.description.abstractThis paper presents a hybrid variational quantum algorithm that finds a random eigen- vector of a unitary matrix with a known quantum circuit. The algorithm is based on the SWAP test on trial states generated by a parametrized quantum circuit. The eigenvec- tor is described by a compact set of classical parameters that can be used to reproduce the found approximation to the eigenstate on demand. This variational eigenvector finder can be adapted to solve the generalized eigenvalue problem, to find the eigen- vectors of normal matrices and to perform quantum principal component analysis on unknown input mixed states. These algorithms can all be run with low-depth quantum circuits, suitable for an efficient implementation on noisy intermediate-scale quantum computers and, with some restrictions, on linear optical systems. In full-scale quan- tum computers, where there might be optimization problems due to barren plateaus in larger systems, the proposed algorithms can be used as a primitive to boost known quantum algorithms. Limitations and potential applications are discussed.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherSpringeres
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectComputación cuántica
dc.subjectFotónica
dc.subject.classificationQuantum algorithmses
dc.subject.classificationVariational algorithmses
dc.subject.classificationHybrid quantum algorithmses
dc.subject.classificationEigenvectorses
dc.subject.classificationQuantum principal component analysises
dc.subject.classificationSWAP testes
dc.titleFinding eigenvectors with a quantum variational algorithmes
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2024 The Author(s)es
dc.identifier.doi10.1007/s11128-024-04461-3es
dc.relation.publisherversionhttps://link.springer.com/article/10.1007/s11128-024-04461-3es
dc.identifier.publicationissue7es
dc.identifier.publicationtitleQuantum Information Processinges
dc.identifier.publicationvolume23es
dc.peerreviewedSIes
dc.description.projectPublicación en abierto financiada por el Consorcio de Bibliotecas Universitarias de Castilla y León (BUCLE), con cargo al Programa Operativo 2014ES16RFOP009 FEDER 2014-2020 DE CASTILLA Y LEÓN, Actuación:20007-CL - Apoyo Consorcio BUCLEes
dc.description.projectMinisterio de Ciencia e Innovación (MCIN) - (project PID2020-119418GB-I00)es
dc.identifier.essn1573-1332es
dc.rightsAtribución 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco2210.23 Teoría Cuánticaes
dc.subject.unesco1203 Ciencia de Los Ordenadores
dc.subject.unesco2209 Óptica


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record