dc.contributor.author | Durán Martín, Ángel | |
dc.contributor.author | Reguera, Nuria | |
dc.date.accessioned | 2025-03-04T10:23:20Z | |
dc.date.available | 2025-03-04T10:23:20Z | |
dc.date.issued | 2024 | |
dc.identifier.citation | Journal of Nonlinear Science, 2024, vol. 34, n. 6 | es |
dc.identifier.issn | 0938-8974 | es |
dc.identifier.uri | https://uvadoc.uva.es/handle/10324/75213 | |
dc.description | Producción Científica | es |
dc.description.abstract | The present paper is the first part of a project devoted to the fractional nonlinear
Schrödinger (fNLS) equation. It is concerned with the existence and numerical gener-
ation of the solitary-wave solutions. For the first point, some conserved quantities of
the problem are used to search for solitary-wave solutions from a constrained critical
point problem and the application of the concentration-compactness theory. Several
properties of the waves, such as the regularity and the asymptotic decay in some cases,
are derived from the existence result. Some other properties, such as the monotone
behavior and the speed-amplitude relation, will be explored computationally. To this
end, a numerical procedure for the generation of the profiles is proposed. The method
is based on a Fourier pseudospectral approximation of the differential system for the
profiles and the use of Petviashvili’s iteration with extrapolation. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.publisher | Springer | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject.classification | Fractional nonlinear Schrödinger equations | es |
dc.subject.classification | Solitary waves | es |
dc.subject.classification | Petviashvili iterative method | es |
dc.subject.classification | Pseudospectral methods | es |
dc.title | Solitary-Wave solutions of the fractional nonlinear Schrödinger Equation: I—Existence and numerical generation | es |
dc.type | info:eu-repo/semantics/article | es |
dc.rights.holder | © 2024 The Author(s) | es |
dc.identifier.doi | 10.1007/s00332-024-10086-8 | es |
dc.relation.publisherversion | https://link.springer.com/article/10.1007/s00332-024-10086-8 | es |
dc.identifier.publicationissue | 6 | es |
dc.identifier.publicationtitle | Journal of Nonlinear Science | es |
dc.identifier.publicationvolume | 34 | es |
dc.peerreviewed | SI | es |
dc.description.project | Publicación en abierto financiada por el Consorcio de Bibliotecas Universitarias de Castilla y León (BUCLE), con cargo al Programa Operativo 2014ES16RFOP009 FEDER 2014-2020 DE CASTILLA Y LEÓN, Actuación:20007-CL - Apoyo Consorcio BUCLE | es |
dc.description.project | The authors are supported by the Spanish Agencia Estatal de Investigación under Research Grant PID2023-147073NB-I00. | es |
dc.identifier.essn | 1432-1467 | es |
dc.rights | Atribución 4.0 Internacional | * |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es |
dc.subject.unesco | 12 Matemáticas | es |