Show simple item record

dc.contributor.authorCámara Moreno, Jesús 
dc.contributor.authorCuenca, Javier
dc.contributor.authorGalindo, Víctor
dc.contributor.authorVicente, Arturo
dc.contributor.authorBoratto, Murilo
dc.date.accessioned2025-03-04T13:25:56Z
dc.date.available2025-03-04T13:25:56Z
dc.date.issued2024
dc.identifier.citationThe Journal of Supercomputing, 2024, vol. 81, n. 1es
dc.identifier.issn0920-8542es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/75227
dc.descriptionProducción Científicaes
dc.description.abstractIn this work, an automatic optimisation approach for parallel routines on multi-GPU systems is presented. Several inter-GPU communication libraries (such as CUDA- Aware MPI or NCCL) are used with a set of routines to perform the numerical oper- ations among the GPUs located on the compute nodes. The main objective is the selection of the most appropriate communication library, the number of GPUs to be used and the workload to be distributed among them in order to reduce the cost of data movements, which represent a large percentage of the total execution time. To this end, a hierarchical modelling of the execution time of each routine to be opti- mised is proposed, combining experimental and theoretical approaches. The results show that near-optimal decisions are taken in all the scenarios analysed.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherSpringeres
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subject.classificationAutotuninges
dc.subject.classificationCommunication librarieses
dc.subject.classificationMulti-GPUes
dc.subject.classificationHeterogeneous computinges
dc.titleAn autotuning approach to select the inter-GPU communication library on heterogeneous systemses
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2024 The Author(s)es
dc.identifier.doi10.1007/s11227-024-06794-3es
dc.relation.publisherversionhttps://link.springer.com/article/10.1007/s11227-024-06794-3es
dc.identifier.publicationissue1es
dc.identifier.publicationtitleThe Journal of Supercomputinges
dc.identifier.publicationvolume81es
dc.peerreviewedSIes
dc.description.projectPublicación en abierto financiada por el Consorcio de Bibliotecas Universitarias de Castilla y León (BUCLE), con cargo al Programa Operativo 2014ES16RFOP009 FEDER 2014-2020 DE CASTILLA Y LEÓN, Actuación:20007-CL - Apoyo Consorcio BUCLEes
dc.description.projectThis work is supported by Grant PID2022-136315OB-I00 and Grant PID2022-142292NB-I00, both funded by MCIN/AEI/10.13039/501100011033/ and by “ERDF A way of making Europe”, EUes
dc.identifier.essn1573-0484es
dc.rightsAtribución 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco1203.17 Informáticaes


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record