Show simple item record

dc.contributor.authorCaiza Morales, Lorena
dc.contributor.authorGómez Almaraz, Cristina 
dc.contributor.authorTorres, Rodrigo
dc.contributor.authorPuzzi Nicolau, Andrea
dc.contributor.authorOlano Mendoza, José Miguel 
dc.date.accessioned2025-03-04T14:02:25Z
dc.date.available2025-03-04T14:02:25Z
dc.date.issued2024
dc.identifier.citationJournal of Geovisualization and Spatial Analysis, 2024, vol.8, n. 1es
dc.identifier.issn2509-8810es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/75231
dc.descriptionProducción Científicaes
dc.description.abstractMangroves, integral to ecological balance and socioeconomic well-being, are facing a concerning decline worldwide. Remote sensing is essential for monitoring their evolution, yet its effectiveness is hindered in developing countries by economic and technical constraints. In addressing this issue, this paper introduces MANGLEE (Mangrove Mapping and Monitoring Tool in Google Earth Engine), an accessible, adaptable, and multipurpose tool designed to address the challenges associated with sustainable mangrove management. Leveraging remote sensing data, machine learning techniques (Random Forest), and change detection methods, MANGLEE consists of three independent modules. The first module acquires, processes, and calculates indices of optical and Synthetic Aperture Radar (SAR) data, enhancing tracking capabilities in the presence of atmospheric interferences. The second module employs Random Forest to classify mangrove and non-mangrove areas, pro- viding accurate binary maps. The third module identifies changes between two-time mangrove maps, categorizing alterations as losses or gains. To validate MANGLEE’s effectiveness, we conducted a case study in the mangroves of Guayas, Ecuador, a region historically threatened by shrimp farming. Utilizing data from 2018 to 2022, our findings reveal a significant loss of over 2900 hectares, with 46% occurring in legally protected areas. This loss corresponds to the rapid expansion of Ecua- dor’s shrimp industry, confirming the tool’s efficacy in monitoring mangroves despite cloud cover challenges. MANGLEE demonstrates its potential as a valuable tool for mangrove monitoring, offering insights essential for conservation, manage- ment plans, and decision-making processes. Remarkably, it facilitates equal access and the optimal utilization of resources, contributing significantly to the preservation of coastal ecosystems.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherSpringeres
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subject.classificationGoogle Earth Enginees
dc.subject.classificationGuayases
dc.subject.classificationMangrovees
dc.subject.classificationRandom Forestes
dc.subject.classificationSentinel-1es
dc.subject.classificationSentinel-2es
dc.titleMANGLEE: A tool for mapping and monitoring MANgrove ecosystem on google earth engine—A case study in Ecuadores
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2024 The Author(s)es
dc.identifier.doi10.1007/s41651-024-00175-3es
dc.relation.publisherversionhttps://link.springer.com/article/10.1007/s41651-024-00175-3es
dc.identifier.publicationissue1es
dc.identifier.publicationtitleJournal of Geovisualization and Spatial Analysises
dc.identifier.publicationvolume8es
dc.peerreviewedSIes
dc.description.projectPublicación en abierto financiada por el Consorcio de Bibliotecas Universitarias de Castilla y León (BUCLE), con cargo al Programa Operativo 2014ES16RFOP009 FEDER 2014-2020 DE CASTILLA Y LEÓN, Actuación:20007-CL - Apoyo Consorcio BUCLEes
dc.description.projectThis work received funding from USAID and NASA through the SERVIR-Amazonia project, under Cooperative Agreement No. 72052719CA00001.es
dc.identifier.essn2509-8829es
dc.rightsAtribución 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco31 Ciencias Agrariases


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record