Show simple item record

dc.contributor.authorParrado-Hernando, Gonzalo
dc.contributor.authorHerc, Luka
dc.contributor.authorPfeifer, Antun
dc.contributor.authorCapellán-Perez, Iñigo
dc.contributor.authorBatas Bjelić, Ilija
dc.contributor.authorDuić, Neven
dc.contributor.authorFrechoso-Escudero, Fernando
dc.contributor.authorMiguel González, Luis Javier 
dc.contributor.authorGjorgievski, Vladimir Z.
dc.date.accessioned2025-05-11T19:50:08Z
dc.date.available2025-05-11T19:50:08Z
dc.date.issued2022
dc.identifier.citationRenewable Energy, September 2022, vol. 197, p. 1192-1223es
dc.identifier.issn0960-1481es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/75726
dc.descriptionProducción Científicaes
dc.description.abstractLong term-energy planning has gradually moved towards finer temporal and spatial resolutions of the energy system to design the decarbonization of the society. However, integrated assessment models (IAMs), focusing on a broader concept of sustainability transition, are typically yearly-resolution models which complicates capturing the specific supply-demand dynamics, relevant in the transition towards renewable energy sources (RES). Different methods for introducing sub-annual information are being used in IAMs, but the hourly representation of variable RES remains challenging. This article presents a method to translate the main dynamics of an hourly-resolution energy model into a yearly-resolution model. Here we test our method with the current European Union region (EU-27) by configuring and applying the hourly-resolution EnergyPLAN. Multiple linear regression analysis is applied to 174960 simulations (set by varying 39 inputs by clusters and reaching 100% renewable systems), relating the adjusted capacity factors of the technologies as well as the variation of electricity demand and natural gas consumption as a function of the options installed to manage the variable RES. The obtained results allow validation of the developed approach, which shows to be flexible and easily generalizable enough to be applied to any couple of hourly and annual-resolution models and/or country.es
dc.format.mimetypeapplication/pdfes
dc.language.isospaes
dc.publisherElsevier Ltdes
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses
dc.subject.classificationEnergyPLANes
dc.subject.classificationIntegrated assessment model (IAM)es
dc.subject.classification100% renewableses
dc.subject.classificationVariable renewable energy source (VRES)es
dc.titleCapturing features of hourly-resolution energy models through statistical annual indicatorses
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holderElsevier Ltdes
dc.identifier.doi10.1016/j.renene.2022.07.040es
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/abs/pii/S0960148122010357es
dc.identifier.publicationfirstpage1192es
dc.identifier.publicationlastpage1223es
dc.identifier.publicationtitleRenewable Energyes
dc.identifier.publicationvolume197es
dc.peerreviewedSIes
dc.description.projectResearch of this article has been supported by the project LOCOMOTION, funded by the European Union's Horizon 2020 research and innovation program, under grant agreement No 821105es
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco3306 Ingeniería y Tecnología Eléctricases
dc.subject.unesco3322 Tecnología Energéticaes


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record