Show simple item record

dc.contributor.authorMartín-Crespo, Alejandro
dc.contributor.authorHernández-Serrano, Alejandro
dc.contributor.authorIzquierdo-Monge, Óscar
dc.contributor.authorPeña-Carro, Paula
dc.contributor.authorHernández-Jiménez, Ángel
dc.contributor.authorFrechoso Escudero, Fernando 
dc.contributor.authorBaeyens Lázaro, Enrique 
dc.date.accessioned2025-05-15T22:29:49Z
dc.date.available2025-05-15T22:29:49Z
dc.date.issued2024
dc.identifier.citationFrontiers in Energy Research, Agosto 2024, vol. 12, p. 1-14es
dc.identifier.issn2296-598Xes
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/75757
dc.descriptionProducción Científicaes
dc.description.abstractIn recent years, the interest in electric direct current (DC) technologies (such as converters, batteries, and electric vehicles) has increased due to their potential in energy efficiency and sustainability. However, the vast majority of electric systems and networks are based on alternating current (AC) as they also have certain advantages regarding cost-effective transport and robustness. In this paper, an AC/DC optimal power flow method for hybrid microgrids and several key performance indicators (KPIs) for its techno-economic assessment are presented. The combination of both calculations allows users to determine the viability of their hybrid microgrids. AC/DC networks have been modeled considering their most common elements. For the power flow method, polynomial optimization is formulated considering four different objective functions: the minimization of energy losses, voltage deviation, and operational costs and the maximization of the microgrid generation. The power flow method and the techno–economic analysis are implemented in Python and validated in the Centro de Desarrollo de Energías Renovables (CEDER) demonstrator for TIGON. The results show that the calculated power flow variables and those measured at CEDER are practically the same. In addition, the KPIs are obtained and compared for four operating scenarios: baseline, no battery, battery flexibility, and virtual battery (VB) flexibility. The last scenario results in the most profitable option.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherFrontiers Media SAes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject.classificationAC/DC optimal power flowes
dc.subject.classificationhybrid microgridses
dc.subject.classificationkey performance indicatorses
dc.subject.classificationpolynomial optimizationes
dc.subject.classificationtechno-economic assessmentes
dc.subject.classificationPythones
dc.titleAC/DC optimal power flow and techno-economic assessment for hybrid microgrids: TIGON CEDER demonstratores
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doi10.3389/fenrg.2024.1399114es
dc.relation.publisherversionhttps://www.frontiersin.org/journals/energy-research/articles/10.3389/fenrg.2024.1399114/fulles
dc.identifier.publicationfirstpage1es
dc.identifier.publicationlastpage14es
dc.identifier.publicationtitleFrontiers in Energy Researches
dc.identifier.publicationvolume12es
dc.peerreviewedSIes
dc.description.projectThis research received funding from the European Union’s Horizon 2020 TIGON project under grant agreement no. 957769es
dc.identifier.essn2296-598Xes
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco3306 Ingeniería y Tecnología Eléctricases


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record