Show simple item record

dc.contributor.authorMartín-Crespo, Alejandro
dc.contributor.authorBaeyens Lázaro, Enrique 
dc.contributor.authorSaludes-Rodil, Sergio
dc.contributor.authorFrechoso Escudero, Fernando 
dc.date.accessioned2025-05-16T06:38:17Z
dc.date.available2025-05-16T06:38:17Z
dc.date.issued2025
dc.identifier.citationInternational Journal of Energy Research, Abril 2025, vol. 2025, n. 1, p. 1-10es
dc.identifier.issn0363-907Xes
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/75758
dc.descriptionProducción Científicaes
dc.description.abstractThe aggregate demand flexibility of a set of residential thermostatically controlled loads (TCLs) can be represented by a virtual battery (VB) in order to manage their participation in the electricity markets. For this purpose, it is necessary to know in advance and with a high level of reliability the maximum power that can be supplied by the aggregation of TCLs. A probability function of the power that can be supplied by a VB is introduced in this paper. This probability function is used to predict the demand flexibility using a rigorous experimental probabilistic method based on a combination of Monte Carlo simulation and extremum search by bisection (MC&ESB) algorithm. As a result, the maximum flexibility power that a VB can provide is obtained. MC&ESB performs the demand flexibility prediction with a given confidence level and taking into account TCLs and users? real-time constraints, which is a novel contribution. The performance and validity of the proposed method are demonstrated and discussed in three different case studies where a VB bids its aggregate power in the Spanish electricity balancing markets (SEBMs).es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherJohn Wiley and Sons Ltdes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject.classificationdemand flexibility predictiones
dc.subject.classificationelectricity balance marketses
dc.subject.classificationMonte Carlo simulationes
dc.subject.classificationthermostatically controlled loadses
dc.subject.classificationvirtual batterieses
dc.titleAggregated Demand Flexibility Prediction of Residential Thermostatically Controlled Loads and Participation in Electricity Balance Marketses
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doi10.1155/er/8819201es
dc.relation.publisherversionhttps://onlinelibrary.wiley.com/doi/full/10.1155/er/8819201es
dc.identifier.publicationfirstpage1es
dc.identifier.publicationissue1es
dc.identifier.publicationlastpage10es
dc.identifier.publicationtitleInternational Journal of Energy Researches
dc.identifier.publicationvolume2025es
dc.peerreviewedSIes
dc.description.projectThis research received funding from the European Union’s Horizon 2020 LocalRES project under the Grant Agreement no. 957819es
dc.identifier.essn1099-114Xes
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco3306 Ingeniería y Tecnología Eléctricases


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record