Mostrar el registro sencillo del ítem

dc.contributor.authorGarcía Marco, Ignacio
dc.contributor.authorGiménez, Philippe Thierry 
dc.contributor.authorGonzález Sánchez, Mario 
dc.date.accessioned2025-06-04T12:54:06Z
dc.date.available2025-06-04T12:54:06Z
dc.date.issued2025
dc.identifier.citationRicerche di Matematica, 2025.es
dc.identifier.issn0035-5038es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/75890
dc.descriptionProducción Científicaes
dc.description.abstractIn this paper, we explore when the Betti numbers of the coordinate rings of a projective monomial curve and one of its affine charts are identical. Given an infinite field k and a sequence of relatively prime integers a0 = 0 < a1 < · · · < a n = d, we consider the projective monomial curve C ⊂ P n k of degree d parametrically defined by x i = u ai vd−ai for all i ∈ {0, . . . , n} and its coordinate ring k[C]. The curve C1 ⊂ An k with parametric equations x i = t ai for i ∈ {1, . . . , n} is an affine chart of C and we denote by k[C1] its coordinate ring. The main contribution of this paper is the introduction of a novel (Gröbner-free) combinatorial criterion that provides a sufficient condition for the equality of the Betti numbers of k[C] and k[C1]. Leveraging this criterion, we identify infinite families of projective curves satisfying this property. Also, we use our results to study the so-called shifted family of monomial curves, i.e., the family of curves associated to the sequences j + a1 < · · · < j + a n for different values of j ∈ N. In this context, Vu proved that for large enough values of j, one has an equality between the Betti numbers of the corresponding affine and projective curves. Using our results, we improve Vu’s upper bound for the least value of j such that this occurs.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherSpringeres
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subject.classificationProjective monomial curvees
dc.subject.classificationAffine monomial curvees
dc.subject.classificationApery setes
dc.subject.classificationPosetes
dc.subject.classificationBetti numberses
dc.titleProjective Cohen-Macaulay monomial curves and their affine chartses
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2025 The Author(s)es
dc.identifier.doi10.1007/s11587-025-00929-1es
dc.relation.publisherversionhttps://link.springer.com/article/10.1007/s11587-025-00929-1es
dc.identifier.publicationtitleRicerche di Matematicaes
dc.peerreviewedSIes
dc.description.projectOpen access funding provided by FEDER European Funds and the Junta De Castilla y León under the Research and Innovation Strategy for Smart Specialization (RIS3) of Castilla y León 2021-2027.es
dc.description.projectThis work was supported in part by Ministerio de Ciencia, Innovación y Universidades and by ERDF/EU (grant PID2022-137283NB-C22)es
dc.identifier.essn1827-3491es
dc.rightsAtribución 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco12 Matemáticases


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem