Mostrar el registro sencillo del ítem

dc.contributor.authorSánchez Calderon, Ismael 
dc.contributor.authorLizalde Arroyo, Félix 
dc.contributor.authorMartín de León, Judith
dc.contributor.authorRodríguez Pérez, Miguel Ángel 
dc.contributor.authorBernardo García, Victoria 
dc.date.accessioned2025-07-30T09:19:25Z
dc.date.available2025-07-30T09:19:25Z
dc.date.issued2025
dc.identifier.citationInternational Communications in Heat and Mass Transfer, 2025, vol. 162, p. 108582es
dc.identifier.issn0735-1933es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/76986
dc.descriptionProducción Científicaes
dc.description.abstractCompacted panels based on micronized nanocellular polymers show reduced thermal conductivity in comparison with bulk nanocellular polymers, especially under vacuum, so they are promising materials to be used as vacuum insulation panels (VIP). The discontinuous structure formed by micrometric particles allows for decreasing the conduction through the solid phase since the contact points between the particles act as additional thermal resistances to the heat transmission. However, the discontinuous structure also leads to the appearance of the coupling effect, which cannot be modeled using the typical equations for cellular polymers. In this work, a semi-empirical model able to predict the thermal conductivity of compacted panels based on nanocellular poly(methyl-methacrylate) (PMMA) is developed. The model allows quantifying each heat transfer mechanism contribution (conduction through the solid phase, conduction through the gas phase, radiation, and coupling effect). The model shows that the contribution of the coupling effect in the compacted panels is higher than 50 % of the total thermal conductivity for pressures higher than 5 mbar, supporting the need for the model to correctly predict the insulation performance of these materials. The model predicts minimum thermal conductivities of 32.5 mW/(m·K) at ambient pressure and of 10 mW/(m·K) at maximum vacuum.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherElsevieres
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject.classificationThermal conductivityes
dc.subject.classificationPoly(methyl-methacrylate)es
dc.subject.classificationThermal insulationes
dc.subject.classificationCompacted micronized nanocellular polymeres
dc.subject.classificationCoupling effectes
dc.titleCoupling effect in compacted panels based on micronized nanocellular polymers: Modeling of the thermal conductivityes
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2025 The Author(s)es
dc.identifier.doi10.1016/j.icheatmasstransfer.2025.108582es
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0735193325000077es
dc.identifier.publicationfirstpage108582es
dc.identifier.publicationtitleInternational Communications in Heat and Mass Transferes
dc.identifier.publicationvolume162es
dc.peerreviewedSIes
dc.description.projectJunta de Castilla y León (VA202P20)es
dc.description.projectMinisterio de Ciencia, Innovación y Universidades (RTI2018-098749-B-I00, PID2021-127108OB-I00, TED2021-130965B-I00, PDC2022-133391-I00 y PTQ2019-010560)es
dc.description.projectFondo Europeo de Desarrollo Regional de la Unión Europea y de la Junta de Castilla y León (ICE: PROYECTOS DE I+D EN PYMES: PAVIPEX. 04/18/VA/008 y PROYECTO M-ERA.NET: FICACEL. 11/20/VA/0001)es
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco23 Químicaes


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem