Mostrar el registro sencillo del ítem

dc.contributor.authorSánchez Calderon, Ismael 
dc.contributor.authorLizalde Arroyo, Félix 
dc.contributor.authorMartín de León, Judith
dc.contributor.authorRodríguez Pérez, Miguel Ángel 
dc.contributor.authorBernardo García, Victoria 
dc.date.accessioned2025-07-30T09:39:54Z
dc.date.available2025-07-30T09:39:54Z
dc.date.issued2025
dc.identifier.citationConstruction and Building Materials, 2025, vol. 489, p. 140522es
dc.identifier.issn0950-0618es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/76995
dc.descriptionProducción Científicaes
dc.description.abstractMicronized nanocellular polymers show great potential to be used as core materials for vacuum insulation panels due to their reduced thermal conductivity under vacuum. However, as a result of their nanocellular structure, these materials are characterized by thermal radiation contributions higher than 4 mW/(m·K). This work studies how to further enhance their thermal insulation behavior by adding infrared blockers to reduce thermal radiation. Three different opacifiers (titanium(IV) oxide, graphene nanoplatelets, and silicon carbide) are used in different contents (2.5, 5, 10, 15, and 20 wt%). The obtained powders are characterized to determine the apparent density, the particle size distribution, and the thermal conductivity. The addition of infrared blockers leads to an increase in apparent density which is also related to the opacifier’s particle size. For each infrared blocker, there is an optimum concentration to achieve the minimum thermal conductivity. Finally, compacted panels are produced to analyze their behavior as VIP cores by measuring thermal conductivity under vacuum conditions. A minimum thermal conductivity of 9.6 mW/(m·K) is obtained for the compacted panel containing 10 wt% of silicon carbide, a reduction of 2 mW/(m·K) regarding the sample without opacifier.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherElsevieres
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject.classificationThermal conductivityes
dc.subject.classificationPoly(methyl-methacrylate)es
dc.subject.classificationMicronized nanocellular polymeres
dc.subject.classificationInfrared blockerses
dc.subject.classificationVIPes
dc.titleImprovement of the thermal conductivity of micronized nanocellular poly(methyl-methacrylate) (PMMA) by adding infrared blockerses
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2025 The Author(s)es
dc.identifier.doi10.1016/j.conbuildmat.2025.140522es
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0950061825006701es
dc.identifier.publicationfirstpage140522es
dc.identifier.publicationtitleConstruction and Building Materialses
dc.identifier.publicationvolume489es
dc.peerreviewedSIes
dc.description.projectJunta de Castilla y León (VA202P20)es
dc.description.projectMinisterio de Ciencia, Innovación y Universidades (PID2021–126046OB-C22, PDC2022–133391-I00, TED2021–129419B-C22 y PTQ2019–010560)es
dc.description.projectFondo Europeo de Desarrollo Regional de la Unión Europea y de Castilla y León (ICE: PROYECTOS DE I+D EN PYMES: (PAVIPEX. 04/18/VA/008 y PROYECTO M-ERA.NET: FICACEL. 11/20/VA/0001)es
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco23 Químicaes


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem