Mostrar el registro sencillo del ítem
dc.contributor.author | Parisuaña, C. | |
dc.contributor.author | Valdivia, M. P. | |
dc.contributor.author | Bouffetier, V. | |
dc.contributor.author | Kurzer-Ogul, K. | |
dc.contributor.author | Bott-Suzuki, S. | |
dc.contributor.author | Casner, A. | |
dc.contributor.author | Christiansen, N. S. | |
dc.contributor.author | Czapla, N. | |
dc.contributor.author | Eder, D. | |
dc.contributor.author | Galtier, E. | |
dc.contributor.author | Glenzer, S. H. | |
dc.contributor.author | Goudal, T. | |
dc.contributor.author | Haines, B. M. | |
dc.contributor.author | Hodge, D. | |
dc.contributor.author | Ikeya, M. | |
dc.contributor.author | Izquierdo, L. | |
dc.contributor.author | Khaghani, D. | |
dc.contributor.author | Kim, Y. | |
dc.contributor.author | Klein, S. | |
dc.contributor.author | Koniges, A. | |
dc.contributor.author | Lee, H. J. | |
dc.contributor.author | Leininger, M. | |
dc.contributor.author | Leong, A. F. T. | |
dc.contributor.author | Lester, R. S. | |
dc.contributor.author | Makita, M. | |
dc.contributor.author | Mancelli, D. | |
dc.contributor.author | Martin, W. M. | |
dc.contributor.author | Nagler, B. | |
dc.contributor.author | Sandberg, R. L. | |
dc.contributor.author | Truong, A. | |
dc.contributor.author | Vescovi, M. | |
dc.contributor.author | Gleason, A. E. | |
dc.contributor.author | Kozlowski, P. M. | |
dc.contributor.author | Pérez Callejo, Gabriel | |
dc.date.accessioned | 2025-08-28T07:34:13Z | |
dc.date.available | 2025-08-28T07:34:13Z | |
dc.date.issued | 2025 | |
dc.identifier.citation | Physics of Plasmas, Agosto 2025, vol. 32, n. 8. p. 082707 | es |
dc.identifier.issn | 1070-664X | es |
dc.identifier.uri | https://uvadoc.uva.es/handle/10324/77239 | |
dc.description | Producción Científica | es |
dc.description.abstract | Achieving practical inertial fusion energy (IFE) requires the development of target designs with well-characterized microstructure and compression response. We measured shock dynamics in low-density (17.5–500 mg/cm3) aerogel and two-photon polymerization (TPP) foams using x-ray phase contrast imaging (XPCI) methods and the Velocity Interferometer System for Any Reflector. By analyzing shock front evolution, we examined how target type and density influence shock propagation and energy dissipation. Talbot-XPCI shows that aerogels support a smooth, bowed shock front due to their homogeneous nanometer-scale pore network. In contrast, TPP foams exhibit irregular, stepwise propagation driven by interactions with their periodic micrometer-scale lattice. Shock velocity follows a power-law relation: aerogels deviate from classical scaling due to pore-collapse dissipation, while TPP foams follow the trend with larger uncertainties from density variations. Comparisons with xRAGE simulations reveal systematic underestimation of shock speeds. These results provide the first experimental constraints on shock propagation in TPP foams over a wide density range and highlight the influence of internal structure on anisotropic shock behavior. Our findings support improved benchmarking of EOS and hydrodynamic models and inform the design of foam architectures that promote implosion symmetry in IFE capsules. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | spa | es |
dc.publisher | American Institute of Physics | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.title | Shock propagation in aerogel and TPP foams for inertial fusion energy target design | es |
dc.type | info:eu-repo/semantics/article | es |
dc.identifier.doi | 10.1063/5.0273572 | es |
dc.identifier.publicationissue | 8 | es |
dc.identifier.publicationtitle | Physics of Plasmas | es |
dc.identifier.publicationvolume | 32 | es |
dc.peerreviewed | SI | es |
dc.description.project | Funding and support to develop and benchmark the TIA/TNT code was provided by Research Grant No. PID2022-137632OB-I00 from the Spanish Ministry of Science and Innovation. | es |
dc.description.project | This work has also been carried out within the framework of the EUROfusion consortium, funded by the European Union via the Euratom Research and Training Program (Grant Agreement Nos. 633053 and 101052200—EUROfusion). The views and opinions expressed are, however, those of the author(s) only and do not necessarily reflect those of the European Union or the European Commission. Neither the European Union nor the European Commission can be held responsible for them. The involved teams have operated within the framework of the Enabling Research Projects: Grant number AWP21-ENR-IFE.01.CEA. | es |
dc.identifier.essn | 1089-7674 | es |
dc.type.hasVersion | info:eu-repo/semantics/acceptedVersion | es |