Show simple item record

dc.contributor.authorParís I Brandrés, Guillem Lluis 
dc.contributor.authorPieciak, Tomász 
dc.contributor.authorJones K., Derek
dc.contributor.authorAja Fernández, Santiago 
dc.contributor.authorTristán Vega, Antonio 
dc.contributor.authorVeraart, Jelle
dc.date.accessioned2025-10-06T11:07:08Z
dc.date.available2025-10-06T11:07:08Z
dc.date.issued2025
dc.identifier.citationMagnetic Resonance in Medicine, 2025, p. 1-16es
dc.identifier.issn0740-3194es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/78335
dc.descriptionProducción Científicaes
dc.description.abstractPurpose: Rotational invariants (RIs) are at the root of many dMRI applications.Among others, they are presented as a sensible way of reducing the dimension-ality of biophysical models. While thermal noise impact on diffusion metrics hasbeen well studied, little is known on its effect on spherical harmonics-based RI(RISH) features and derived markers. In this work, we evaluate the effect of noiseon RISH features and downstream Standard Model Imaging (SMI) estimates. Theory and Methods: Using simulated and test/retest multishell MRI data,we assess the accuracy and precision of RISH features and SMI parameters inthe presence of thermal noise, as well as its robustness to variations in protocoldesign. We further propose and evaluate correction strategies that bypass theneed of rotational invariant features as an intermediate step. Results: Both RISH features and SMI estimates are impacted by SNR-dependentRician biases. However, higher-order RISH features are susceptible to a sec-ondary noise-related source of bias, which not only depends on SNR, but alsoprotocol and underlying microstructure. Rician bias-correcting techniques areinsufficient to maximize the accuracy of RISH and SMI features, or to ensureconsistency across protocols. SMI estimators that avoid RISH features by fit-ting the model to the directional diffusion MRI data outperform RISH-basedapproaches in accuracy, repeatability, and reproducibility across acquisitionprotocols. Conclusions: RISH features are increasingly used in dMRI analysis, yet theyare prone to various sources of noise that lower their accuracy and reproducibil-ity. Understanding the impact of noise and mitigating such biases is critical tomaximize the validity, repeatability, and reproducibility of dMRI studies.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherWileyes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectModelos biofísicoses
dc.subjectImágenes ponderadas por difusiónes
dc.subjectSesgo de Ricianes
dc.subjectInvariantes rotacionaleses
dc.subjectImágenes del modelo estándares
dc.titleThermal noise lowers the accuracy of rotationally invariant harmonics of diffusion MRI data and their robustness to experimental variationses
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2025 The Author(s)es
dc.identifier.doi10.1002/mrm.70035es
dc.relation.publisherversionhttps://onlinelibrary.wiley.com/doi/epdf/10.1002/mrm.70035es
dc.identifier.publicationfirstpage1es
dc.identifier.publicationlastpage16es
dc.identifier.publicationtitleMagnetic Resonance in Medicinees
dc.peerreviewedSIes
dc.description.projectNational Institute of NeurologicalDisorders and Stroke, Grant Number: R01 NS088040es
dc.description.projectNarodowa Agencja Wymiany Akademickiej, Grant Number: PPN/BEK/2019/1/00421es
dc.description.projectConsejería de Educación, Junta de Castilla y León, Grant Number: Orden EDU/1100/2017 12/12es
dc.description.projectEPSRC Centre for Doctoral Training in Medical Imaging, Grant Number: EP/M029778/1es
dc.description.projectAgencia Estatal de Investigación (AEI), Grant Numbers: PID2021-124407NB-I00 y TED2021-130758B-I00es
dc.description.projectJunta de Castilla y León, Grant Number: VA156P24es
dc.description.projectEuropean Social Fund Pluses
dc.description.projectKrajowy Naukowy Osrodek Wiodacy, Grant Number: 692/STYP/13/2018es
dc.description.projectNational Institute of Biomedical Imaging and Bioengineering, Grant Number: NIH P41 EB017183es
dc.description.projectOpen access funding provided by FEDER European Funds and the Junta De Castilla y León under the Research and Innovation Strategy for Smart Specialization (RIS3) of Castilla y León 2021-2027.es
dc.identifier.essn1522-2594es
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record