| dc.contributor.author | París I Brandrés, Guillem Lluis |  | 
| dc.contributor.author | Pieciak, Tomász |  | 
| dc.contributor.author | Jones K., Derek |  | 
| dc.contributor.author | Aja Fernández, Santiago |  | 
| dc.contributor.author | Tristán Vega, Antonio |  | 
| dc.contributor.author | Veraart, Jelle |  | 
| dc.date.accessioned | 2025-10-06T11:07:08Z |  | 
| dc.date.available | 2025-10-06T11:07:08Z |  | 
| dc.date.issued | 2025 |  | 
| dc.identifier.citation | Magnetic Resonance in Medicine, 2025, p. 1-16 | es | 
| dc.identifier.issn | 0740-3194 | es | 
| dc.identifier.uri | https://uvadoc.uva.es/handle/10324/78335 |  | 
| dc.description | Producción Científica | es | 
| dc.description.abstract | Purpose: Rotational invariants (RIs) are at the root of many dMRI applications.Among others, they are presented as a sensible way of reducing the dimension-ality of biophysical models. While thermal noise impact on diffusion metrics hasbeen well studied, little is known on its effect on spherical harmonics-based RI(RISH) features and derived markers. In this work, we evaluate the effect of noiseon RISH features and downstream Standard Model Imaging (SMI) estimates.
Theory and Methods: Using simulated and test/retest multishell MRI data,we assess the accuracy and precision of RISH features and SMI parameters inthe presence of thermal noise, as well as its robustness to variations in protocoldesign. We further propose and evaluate correction strategies that bypass theneed of rotational invariant features as an intermediate step.
Results: Both RISH features and SMI estimates are impacted by SNR-dependentRician biases. However, higher-order RISH features are susceptible to a sec-ondary noise-related source of bias, which not only depends on SNR, but alsoprotocol and underlying microstructure. Rician bias-correcting techniques areinsufficient to maximize the accuracy of RISH and SMI features, or to ensureconsistency across protocols. SMI estimators that avoid RISH features by fit-ting the model to the directional diffusion MRI data outperform RISH-basedapproaches in accuracy, repeatability, and reproducibility across acquisitionprotocols.
Conclusions: RISH features are increasingly used in dMRI analysis, yet theyare prone to various sources of noise that lower their accuracy and reproducibil-ity. Understanding the impact of noise and mitigating such biases is critical tomaximize the validity, repeatability, and reproducibility of dMRI studies. | es | 
| dc.format.mimetype | application/pdf | es | 
| dc.language.iso | eng | es | 
| dc.publisher | Wiley | es | 
| dc.rights.accessRights | info:eu-repo/semantics/openAccess | es | 
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * | 
| dc.subject | Modelos biofísicos | es | 
| dc.subject | Imágenes ponderadas por difusión | es | 
| dc.subject | Sesgo de Rician | es | 
| dc.subject | Invariantes rotacionales | es | 
| dc.subject | Imágenes del modelo estándar | es | 
| dc.title | Thermal noise lowers the accuracy of rotationally invariant harmonics of diffusion MRI data and their robustness to experimental variations | es | 
| dc.type | info:eu-repo/semantics/article | es | 
| dc.rights.holder | © 2025 The Author(s) | es | 
| dc.identifier.doi | 10.1002/mrm.70035 | es | 
| dc.relation.publisherversion | https://onlinelibrary.wiley.com/doi/epdf/10.1002/mrm.70035 | es | 
| dc.identifier.publicationfirstpage | 1 | es | 
| dc.identifier.publicationlastpage | 16 | es | 
| dc.identifier.publicationtitle | Magnetic Resonance in Medicine | es | 
| dc.peerreviewed | SI | es | 
| dc.description.project | National Institute of NeurologicalDisorders and Stroke, Grant Number: R01 NS088040 | es | 
| dc.description.project | Narodowa Agencja Wymiany Akademickiej, Grant Number: PPN/BEK/2019/1/00421 | es | 
| dc.description.project | Consejería de Educación, Junta de Castilla y León, Grant Number: Orden EDU/1100/2017 12/12 | es | 
| dc.description.project | EPSRC Centre for Doctoral Training in Medical Imaging, Grant Number: EP/M029778/1 | es | 
| dc.description.project | Agencia Estatal de Investigación (AEI), Grant Numbers: PID2021-124407NB-I00 y TED2021-130758B-I00 | es | 
| dc.description.project | Junta de Castilla y León, Grant Number: VA156P24 | es | 
| dc.description.project | European Social Fund Plus | es | 
| dc.description.project | Krajowy Naukowy Osrodek Wiodacy, Grant Number: 692/STYP/13/2018 | es | 
| dc.description.project | National Institute of Biomedical Imaging and Bioengineering, Grant Number: NIH P41 EB017183 | es | 
| dc.description.project | Open access funding provided by FEDER European Funds and the Junta De Castilla y León under the Research and Innovation Strategy for Smart Specialization (RIS3) of Castilla y León 2021-2027. | es | 
| dc.identifier.essn | 1522-2594 | es | 
| dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * | 
| dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es |